Spaces:
Runtime error
Runtime error
import transformers | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelWithLMHead | |
from transformers import pipeline | |
#tokenizer = AutoTokenizer.from_pretrained("gpt2-medium") | |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment") | |
def load_model(model_name): | |
model = AutoModelWithLMHead.from_pretrained(model_name) | |
return model | |
def load_text_gen_model(): | |
generator = pipeline("text-generation", model="gpt2-medium") | |
return generator | |
def get_sentiment_model(): | |
sentiment_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment") | |
return sentiment_model | |
def get_sentiment(text): | |
input_ids = sentiment_tokenizer .encode(text + '</s>', return_tensors='pt') | |
output = sentiment_model.generate(input_ids=input_ids,max_length=2) | |
dec = [sentiment_tokenizer.decode(ids) for ids in output] | |
label = dec[0] | |
return label | |
#@st.cache(allow_output_mutation=True) | |
def get_summarizer(): | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
return summarizer | |
def get_qa_model(): | |
model_name = "deepset/roberta-base-squad2" | |
qa_pipeline = = pipeline('question-answering', model=model_name, tokenizer=model_name) | |
return qa_pipeline | |
sentiment_model = get_sentiment_model() | |
summarizer = get_summarizer() | |
answer_geerator = get_qa_model() | |
#text_generator = load_text_gen_model() | |
action = st.sidebar.selectbox("Pick an Action", ["Analyse a Review","Generate an Article","Create an Image"]) | |
if action == "Analyse a Review": | |
review = st.text_area("Paste the review here..") | |
if review: | |
#res = text_generator( prompt, max_length=100, temperature=0.7) | |
#st.write(res) | |
sentiment = get_sentiment(review) | |
st.write(sentiment) | |
if st.button("Summarize the review"): | |
summary = summarizer(review, max_length=130, min_length=30, do_sample=False) | |
st.write(summary) | |
if st.button("Find the key topic"): | |
QA_input = {'question': 'what is the review about?', | |
'context': review} | |
answer = answer_geerator (QA_input) | |
st.write(answer) | |