Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,13 +10,6 @@ from torch.utils.data import TensorDataset, DataLoader, RandomSampler, Sequentia
|
|
10 |
st.markdown("### Paper category classification")
|
11 |
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
12 |
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter
|
13 |
-
|
14 |
-
title = st.text_area("INPUT TITLE HERE")
|
15 |
-
abstract = st.text_area("INPUT ABSTRACT HERE")
|
16 |
-
# ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент
|
17 |
-
if len(title) == 0 and len(abstract):
|
18 |
-
st.markdown(f"Could you input paper title/abstrac :)")
|
19 |
-
|
20 |
@st.cache
|
21 |
def load_model_and_tokenizer():
|
22 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
@@ -27,85 +20,95 @@ def load_model_and_tokenizer():
|
|
27 |
return model, tokenizer
|
28 |
|
29 |
model, tokenizer = load_model_and_tokenizer()
|
30 |
-
MAX_LEN = 64
|
31 |
-
# Преобразуем название статьи в токены
|
32 |
-
tokens = tokenizer(title, padding=True, truncation=True, return_tensors="pt")
|
33 |
-
|
34 |
-
# Получаем предсказание модели для названия статьи и абстракта (если есть)
|
35 |
-
input_ids = tokens['input_ids']
|
36 |
-
attention_mask = tokens['attention_mask']
|
37 |
-
logits = model(input_ids, attention_mask)[0]
|
38 |
-
|
39 |
-
tags_names = ['Accelerator Physics',
|
40 |
-
'adap-org',
|
41 |
-
"adap-org",
|
42 |
-
'Algebra-Geometry',
|
43 |
-
'Astro-physics',
|
44 |
-
"Astro-physics",
|
45 |
-
'Chao-dynamics',
|
46 |
-
'Chemistry-physics',
|
47 |
-
'cmp-lg',
|
48 |
-
"cmp-lg",
|
49 |
-
'comp-gas',
|
50 |
-
'cond-mat',
|
51 |
-
"cond-mat",
|
52 |
-
'Computer Science',
|
53 |
-
'dg-ga',
|
54 |
-
'Economics',
|
55 |
-
'eess',
|
56 |
-
'funct-an',
|
57 |
-
'gr-qc',
|
58 |
-
"gr-qc",
|
59 |
-
'hep-ex',
|
60 |
-
"hep-ex",
|
61 |
-
'hep-lat',
|
62 |
-
"hep-lat",
|
63 |
-
'hep-ph',
|
64 |
-
"hep-ph",
|
65 |
-
'hep-th',
|
66 |
-
"hep-th",
|
67 |
-
'Math',
|
68 |
-
'math-ph',
|
69 |
-
'mtrl-th',
|
70 |
-
'nlin',
|
71 |
-
'nucl-ex',
|
72 |
-
'nucl-th',
|
73 |
-
"nucl-th",
|
74 |
-
'patt-sol',
|
75 |
-
'Physics',
|
76 |
-
'q-alg',
|
77 |
-
'Quantitie-biology',
|
78 |
-
'q-fin',
|
79 |
-
'quant-ph',
|
80 |
-
"quant-ph",
|
81 |
-
'solv-int',
|
82 |
-
'Statistics']
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
st.markdown("### Paper category classification")
|
11 |
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True)
|
12 |
# ^-- можно показывать пользователю текст, картинки, ограниченное подмножество html - всё как в jupyter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@st.cache
|
14 |
def load_model_and_tokenizer():
|
15 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
|
20 |
return model, tokenizer
|
21 |
|
22 |
model, tokenizer = load_model_and_tokenizer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
title = st.text_area("INPUT TITLE HERE")
|
25 |
+
abstract = st.text_area("INPUT ABSTRACT HERE")
|
26 |
+
# ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент
|
27 |
+
if len(title) == 0 and len(abstract) == 0:
|
28 |
+
st.markdown(f"Could you input paper title/abstract :)")
|
29 |
+
elif len(title) == 0 and len(abstract) > 0:
|
30 |
+
st.markdown(f"Could you input paper title :)")
|
31 |
+
else:
|
32 |
+
|
33 |
+
MAX_LEN = 64
|
34 |
+
# Преобразуем название статьи в токены
|
35 |
+
tokens = tokenizer(title, padding=True, truncation=True, return_tensors="pt")
|
36 |
+
|
37 |
+
# Получаем предсказание модели для названия статьи и абстракта (если есть)
|
38 |
+
input_ids = tokens['input_ids']
|
39 |
+
attention_mask = tokens['attention_mask']
|
40 |
+
logits = model(input_ids, attention_mask)[0]
|
41 |
+
|
42 |
+
tags_names = ['Accelerator Physics',
|
43 |
+
'adap-org',
|
44 |
+
"adap-org",
|
45 |
+
'Algebra-Geometry',
|
46 |
+
'Astro-physics',
|
47 |
+
"Astro-physics",
|
48 |
+
'Chao-dynamics',
|
49 |
+
'Chemistry-physics',
|
50 |
+
'cmp-lg',
|
51 |
+
"cmp-lg",
|
52 |
+
'comp-gas',
|
53 |
+
'cond-mat',
|
54 |
+
"cond-mat",
|
55 |
+
'Computer Science',
|
56 |
+
'dg-ga',
|
57 |
+
'Economics',
|
58 |
+
'eess',
|
59 |
+
'funct-an',
|
60 |
+
'gr-qc',
|
61 |
+
"gr-qc",
|
62 |
+
'hep-ex',
|
63 |
+
"hep-ex",
|
64 |
+
'hep-lat',
|
65 |
+
"hep-lat",
|
66 |
+
'hep-ph',
|
67 |
+
"hep-ph",
|
68 |
+
'hep-th',
|
69 |
+
"hep-th",
|
70 |
+
'Math',
|
71 |
+
'math-ph',
|
72 |
+
'mtrl-th',
|
73 |
+
'nlin',
|
74 |
+
'nucl-ex',
|
75 |
+
'nucl-th',
|
76 |
+
"nucl-th",
|
77 |
+
'patt-sol',
|
78 |
+
'Physics',
|
79 |
+
'q-alg',
|
80 |
+
'Quantitie-biology',
|
81 |
+
'q-fin',
|
82 |
+
'quant-ph',
|
83 |
+
"quant-ph",
|
84 |
+
'solv-int',
|
85 |
+
'Statistics']
|
86 |
+
|
87 |
+
if abstract:
|
88 |
+
abstract_tokens = tokenizer(abstract, padding=True, truncation=True, return_tensors="pt")
|
89 |
+
abstract_input_ids = abstract_tokens['input_ids']
|
90 |
+
abstract_attention_mask = abstract_tokens['attention_mask']
|
91 |
+
abstract_logits = model(abstract_input_ids, abstract_attention_mask)[0]
|
92 |
+
logits += abstract_logits
|
93 |
+
|
94 |
+
# Получаем вероятности и сортируем их в порядке убывания
|
95 |
+
probs = torch.softmax(logits, dim=-1).squeeze()
|
96 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
|
97 |
+
|
98 |
+
# Считаем сумму вероятностей
|
99 |
+
sum_probs = 0.0
|
100 |
+
top_classes = []
|
101 |
+
for i in range(len(sorted_probs)):
|
102 |
+
sum_probs += sorted_probs[i]
|
103 |
+
if sum_probs > 0.95 or sorted_probs[i] < 0.001:
|
104 |
+
break
|
105 |
+
top_classes.append((tags_names[sorted_indices[i].item()], sorted_probs[i].item()))
|
106 |
+
|
107 |
+
# Выводим список тем с их вероятностями
|
108 |
+
# from transformers import pipeline
|
109 |
+
# pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl")
|
110 |
+
raw_predictions = top_classes#le.inverse_transform(prediction)#pipe(text)
|
111 |
+
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost
|
112 |
+
|
113 |
+
st.markdown(f"Possible categories with their probabilities for this paper : {raw_predictions}")
|
114 |
+
# выводим результаты модели в текстовое поле, на потеху пользователю
|