Spaces:
Sleeping
Sleeping
File size: 2,995 Bytes
fcb92fa 32331b8 d7d91e9 30fe6c5 fcb92fa 858fd83 fcb92fa 4b8ab3d fae6d46 fcb92fa fae6d46 fcb92fa fae6d46 e8a947e 4b8ab3d fae6d46 1d44339 858fd83 1d44339 fae6d46 1d44339 fae6d46 1d44339 858fd83 1d44339 fae6d46 1d44339 fae6d46 1d44339 fae6d46 1d44339 858fd83 1d44339 fae6d46 1d44339 fae6d46 1d44339 fae6d46 858fd83 1d44339 fae6d46 1d44339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")
# Load data
file_path = "Teams.csv"
df = pd.read_csv(file_path)
# Get unique player names
player_names = df["Player"].unique()
# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names
# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)
# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")
if selected_player:
player_data = df[df["Player"] == selected_player].iloc[0]
labels = ["Test", "ODI", "T20", "IPL"]
if show_batting:
# Pie Chart - Matches Played Across Formats
matches = [
player_data.get("Matches_Test", 0),
player_data.get("Matches_ODI", 0),
player_data.get("Matches_T20", 0),
player_data.get("Matches_IPL", 0)
]
fig, ax = plt.subplots()
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90)
ax.set_title(f"Matches Played by {selected_player}")
st.pyplot(fig)
# Bar Chart - Runs Scored
batting_runs = [
player_data.get("batting_Runs_Test", 0),
player_data.get("batting_Runs_ODI", 0),
player_data.get("batting_Runs_T20", 0),
player_data.get("batting_Runs_IPL", 0)
]
fig, ax = plt.subplots()
ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"])
ax.set_ylabel("Runs Scored")
ax.set_title(f"Runs Scored by {selected_player}")
st.pyplot(fig)
if show_bowling:
# Calculate Overs Bowled
overs_bowled = [
player_data.get("bowling_Test_Balls", 0) // 6,
player_data.get("bowling_ODI_Balls", 0) // 6,
player_data.get("bowling_T20_Balls", 0) // 6,
player_data.get("bowling_IPL_Balls", 0) // 6
]
# Bar Chart - Overs Bowled
fig, ax = plt.subplots()
ax.bar(labels, overs_bowled, color=["purple", "orange", "cyan", "brown"])
ax.set_ylabel("Overs Bowled")
ax.set_title(f"Overs Bowled by {selected_player}")
st.pyplot(fig)
# Line Chart - Wickets Taken
wickets_taken = [
player_data.get("bowling_Wickets_Test", 0),
player_data.get("bowling_Wickets_ODI", 0),
player_data.get("bowling_Wickets_T20", 0),
player_data.get("bowling_Wickets_IPL", 0)
]
fig, ax = plt.subplots()
ax.plot(labels, wickets_taken, marker='o', linestyle='-', color='red')
ax.set_ylabel("Wickets Taken")
ax.set_title(f"Wickets Taken by {selected_player}")
st.pyplot(fig)
|