File size: 2,995 Bytes
fcb92fa
 
 
 
32331b8
d7d91e9
30fe6c5
fcb92fa
858fd83
fcb92fa
 
4b8ab3d
fae6d46
 
 
 
 
fcb92fa
fae6d46
 
fcb92fa
fae6d46
 
 
e8a947e
4b8ab3d
 
fae6d46
 
1d44339
 
 
858fd83
 
 
 
1d44339
 
fae6d46
 
1d44339
 
fae6d46
1d44339
858fd83
 
 
 
1d44339
 
fae6d46
 
 
1d44339
fae6d46
1d44339
fae6d46
1d44339
858fd83
 
 
 
1d44339
fae6d46
 
1d44339
fae6d46
 
 
1d44339
fae6d46
 
 
858fd83
 
 
 
1d44339
 
fae6d46
 
 
1d44339
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")

# Load data
file_path = "Teams.csv"
df = pd.read_csv(file_path)

# Get unique player names
player_names = df["Player"].unique()

# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names

# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)

# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")

if selected_player:
    player_data = df[df["Player"] == selected_player].iloc[0]
    labels = ["Test", "ODI", "T20", "IPL"]
    
    if show_batting:
        # Pie Chart - Matches Played Across Formats
        matches = [
            player_data.get("Matches_Test", 0),
            player_data.get("Matches_ODI", 0),
            player_data.get("Matches_T20", 0),
            player_data.get("Matches_IPL", 0)
        ]
        fig, ax = plt.subplots()
        ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90)
        ax.set_title(f"Matches Played by {selected_player}")
        st.pyplot(fig)

        # Bar Chart - Runs Scored
        batting_runs = [
            player_data.get("batting_Runs_Test", 0),
            player_data.get("batting_Runs_ODI", 0),
            player_data.get("batting_Runs_T20", 0),
            player_data.get("batting_Runs_IPL", 0)
        ]
        fig, ax = plt.subplots()
        ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"])
        ax.set_ylabel("Runs Scored")
        ax.set_title(f"Runs Scored by {selected_player}")
        st.pyplot(fig)
    
    if show_bowling:
        # Calculate Overs Bowled
        overs_bowled = [
            player_data.get("bowling_Test_Balls", 0) // 6,
            player_data.get("bowling_ODI_Balls", 0) // 6,
            player_data.get("bowling_T20_Balls", 0) // 6,
            player_data.get("bowling_IPL_Balls", 0) // 6
        ]
        
        # Bar Chart - Overs Bowled
        fig, ax = plt.subplots()
        ax.bar(labels, overs_bowled, color=["purple", "orange", "cyan", "brown"])
        ax.set_ylabel("Overs Bowled")
        ax.set_title(f"Overs Bowled by {selected_player}")
        st.pyplot(fig)
        
        # Line Chart - Wickets Taken
        wickets_taken = [
            player_data.get("bowling_Wickets_Test", 0),
            player_data.get("bowling_Wickets_ODI", 0),
            player_data.get("bowling_Wickets_T20", 0),
            player_data.get("bowling_Wickets_IPL", 0)
        ]
        fig, ax = plt.subplots()
        ax.plot(labels, wickets_taken, marker='o', linestyle='-', color='red')
        ax.set_ylabel("Wickets Taken")
        ax.set_title(f"Wickets Taken by {selected_player}")
        st.pyplot(fig)