File size: 5,087 Bytes
fcb92fa
 
 
 
32331b8
d7d91e9
30fe6c5
fcb92fa
fd28c1c
fcb92fa
4b8ab3d
fae6d46
 
 
 
 
fcb92fa
fae6d46
 
fcb92fa
fae6d46
 
 
e8a947e
4b8ab3d
 
fae6d46
 
1d44339
e405c05
 
 
f272351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b1ff8
 
943bd1e
 
 
 
b4b1ff8
 
943bd1e
 
 
 
e405c05
 
b4b1ff8
 
 
 
 
e405c05
 
f272351
b4b1ff8
 
943bd1e
 
 
 
b4b1ff8
 
943bd1e
 
 
 
e405c05
 
b4b1ff8
 
 
 
 
e405c05
fae6d46
943bd1e
 
 
 
 
 
 
 
 
 
 
 
fae6d46
943bd1e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")

# Load data
df = pd.read_csv("Team_Info.csv")

# Get unique player names
player_names = df["Player"].unique()

# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names

# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)

# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")

if selected_player:
    player_data = df[df["Player"] == selected_player].iloc[0]
    labels = ["Test", "ODI", "T20", "IPL"]
    
    if show_batting:
        col1, col2 = st.columns(2)
        
        with col1:
            # Pie Chart - Matches Played Across Formats
            matches = [
                player_data.get("Matches_Test", 0),
                player_data.get("Matches_ODI", 0),
                player_data.get("Matches_T20", 0),
                player_data.get("Matches_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90)
            ax.set_title(f"Matches Played by {selected_player}")
            st.pyplot(fig)
        
        with col2:
            # Bar Chart - Runs Scored
            batting_runs = [
                player_data.get("batting_Runs_Test", 0),
                player_data.get("batting_Runs_ODI", 0),
                player_data.get("batting_Runs_T20", 0),
                player_data.get("batting_Runs_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"])
            ax.set_ylabel("Runs Scored")
            ax.set_title(f"Runs Scored by {selected_player}")
            st.pyplot(fig)
        
        col3, col4 = st.columns(2)
        
        with col3:
            # Bar Chart - 100s and 50s
            hundreds = [
                player_data.get("batting_100s_Test", 0),
                player_data.get("batting_100s_ODI", 0),
                player_data.get("batting_100s_T20", 0),
                player_data.get("batting_100s_IPL", 0)
            ]
            fifties = [
                player_data.get("batting_50s_Test", 0),
                player_data.get("batting_50s_ODI", 0),
                player_data.get("batting_50s_T20", 0),
                player_data.get("batting_50s_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, hundreds, label="100s", color="gold")
            ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds)
            ax.set_ylabel("Count")
            ax.set_title(f"Centuries & Fifties by {selected_player}")
            ax.legend()
            st.pyplot(fig)
        
        with col4:
            # Line Chart - Strike Rate & Average
            strike_rate = [
                player_data.get("batting_SR_Test", 0),
                player_data.get("batting_SR_ODI", 0),
                player_data.get("batting_SR_T20", 0),
                player_data.get("batting_SR_IPL", 0)
            ]
            batting_avg = [
                player_data.get("batting_Average_Test", 0),
                player_data.get("batting_Average_ODI", 0),
                player_data.get("batting_Average_T20", 0),
                player_data.get("batting_Average_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate")
            ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average")
            ax.set_ylabel("Value")
            ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
            ax.legend()
            st.pyplot(fig)
        
        # Bar Chart - Batting Innings
        batting_innings = [
            player_data.get("batting_Innings_Test", 0),
            player_data.get("batting_Innings_ODI", 0),
            player_data.get("batting_Innings_T20", 0),
            player_data.get("batting_Innings_IPL", 0)
        ]
        fig, ax = plt.subplots()
        ax.bar(labels, batting_innings, color=["skyblue", "orange", "lime", "purple"])
        ax.set_ylabel("Innings Played")
        ax.set_title(f"Batting Innings by {selected_player}")
        st.pyplot(fig)
        
        # Bar Chart - Balls Faced
        batting_balls = [
            player_data.get("batting_Balls_Test", 0),
            player_data.get("batting_Balls_ODI", 0),
            player_data.get("batting_Balls_T20", 0),
            player_data.get("batting_Balls_IPL", 0)
        ]
        fig, ax = plt.subplots()
        ax.bar(labels, batting_balls, color=["red", "green", "blue", "purple"])
        ax.set_ylabel("Balls Faced")
        ax.set_title(f"Balls Faced by {selected_player}")
        st.pyplot(fig)