Spaces:
Sleeping
Sleeping
File size: 4,284 Bytes
fcb92fa 32331b8 d7d91e9 30fe6c5 fcb92fa b4b1ff8 fcb92fa 4b8ab3d fae6d46 fcb92fa fae6d46 fcb92fa fae6d46 e8a947e 4b8ab3d fae6d46 1d44339 e405c05 b4b1ff8 e405c05 b4b1ff8 e405c05 b4b1ff8 e405c05 b4b1ff8 e405c05 fae6d46 1d44339 e405c05 fae6d46 e405c05 b4b1ff8 e405c05 b4b1ff8 e405c05 fae6d46 e405c05 b4b1ff8 e405c05 b4b1ff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")
# Load data
df = pd.read_csv("Team_Info.csv")
# Get unique player names
player_names = df["Player"].unique()
# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names
# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)
# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")
if selected_player:
player_data = df[df["Player"] == selected_player].iloc[0]
labels = ["Test", "ODI", "T20", "IPL"]
if show_batting:
col1, col2 = st.columns(2)
with col1:
# Bar Chart - 100s and 50s
hundreds = [
player_data.get("100s_Test", 0),
player_data.get("100s_ODI", 0),
player_data.get("100s_T20", 0),
player_data.get("100s_IPL", 0)
]
fifties = [
player_data.get("50s_Test", 0),
player_data.get("50s_ODI", 0),
player_data.get("50s_T20", 0),
player_data.get("50s_IPL", 0)
]
fig, ax = plt.subplots()
ax.bar(labels, hundreds, label="100s", color="gold")
ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds)
ax.set_ylabel("Count")
ax.set_title(f"Centuries & Fifties by {selected_player}")
ax.legend()
st.pyplot(fig)
with col2:
# Line Chart - Strike Rate & Average
strike_rate = [
player_data.get("SR_Test", 0),
player_data.get("SR_ODI", 0),
player_data.get("SR_T20", 0),
player_data.get("SR_IPL", 0)
]
batting_avg = [
player_data.get("Avg_Test", 0),
player_data.get("Avg_ODI", 0),
player_data.get("Avg_T20", 0),
player_data.get("Avg_IPL", 0)
]
fig, ax = plt.subplots()
ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate")
ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average")
ax.set_ylabel("Value")
ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
ax.legend()
st.pyplot(fig)
if show_bowling:
col1, col2 = st.columns(2)
with col1:
# Bar Chart - Economy Rate
economy_rate = [
player_data.get("Econ_Test", 0),
player_data.get("Econ_ODI", 0),
player_data.get("Econ_T20", 0),
player_data.get("Econ_IPL", 0)
]
fig, ax = plt.subplots()
ax.bar(labels, economy_rate, color=["purple", "orange", "cyan", "brown"])
ax.set_ylabel("Economy Rate")
ax.set_title(f"Economy Rate of {selected_player}")
st.pyplot(fig)
with col2:
# Scatter Plot - Bowling Average & Strike Rate
bowling_avg = [
player_data.get("Bowl_Avg_Test", 0),
player_data.get("Bowl_Avg_ODI", 0),
player_data.get("Bowl_Avg_T20", 0),
player_data.get("Bowl_Avg_IPL", 0)
]
bowling_sr = [
player_data.get("Bowl_SR_Test", 0),
player_data.get("Bowl_SR_ODI", 0),
player_data.get("Bowl_SR_T20", 0),
player_data.get("Bowl_SR_IPL", 0)
]
fig, ax = plt.subplots()
ax.scatter(labels, bowling_avg, color='blue', label="Bowling Average")
ax.scatter(labels, bowling_sr, color='red', label="Bowling Strike Rate")
ax.set_ylabel("Value")
ax.set_title(f"Bowling Average & Strike Rate of {selected_player}")
ax.legend()
st.pyplot(fig) |