File size: 4,284 Bytes
fcb92fa
 
 
 
32331b8
d7d91e9
30fe6c5
fcb92fa
b4b1ff8
fcb92fa
4b8ab3d
fae6d46
 
 
 
 
fcb92fa
fae6d46
 
fcb92fa
fae6d46
 
 
e8a947e
4b8ab3d
 
fae6d46
 
1d44339
e405c05
 
 
b4b1ff8
 
 
 
 
 
 
 
 
 
 
 
e405c05
 
b4b1ff8
 
 
 
 
e405c05
 
 
b4b1ff8
 
 
 
 
 
 
 
 
 
 
 
e405c05
 
b4b1ff8
 
 
 
 
e405c05
fae6d46
1d44339
e405c05
fae6d46
e405c05
b4b1ff8
 
 
 
 
 
e405c05
 
b4b1ff8
 
 
e405c05
fae6d46
e405c05
b4b1ff8
 
 
 
 
 
 
 
 
 
 
 
e405c05
 
b4b1ff8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt

# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")

# Load data
df = pd.read_csv("Team_Info.csv")

# Get unique player names
player_names = df["Player"].unique()

# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names

# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)

# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")

if selected_player:
    player_data = df[df["Player"] == selected_player].iloc[0]
    labels = ["Test", "ODI", "T20", "IPL"]
    
    if show_batting:
        col1, col2 = st.columns(2)
        
        with col1:
            # Bar Chart - 100s and 50s
            hundreds = [
                player_data.get("100s_Test", 0),
                player_data.get("100s_ODI", 0),
                player_data.get("100s_T20", 0),
                player_data.get("100s_IPL", 0)
            ]
            fifties = [
                player_data.get("50s_Test", 0),
                player_data.get("50s_ODI", 0),
                player_data.get("50s_T20", 0),
                player_data.get("50s_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, hundreds, label="100s", color="gold")
            ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds)
            ax.set_ylabel("Count")
            ax.set_title(f"Centuries & Fifties by {selected_player}")
            ax.legend()
            st.pyplot(fig)
        
        with col2:
            # Line Chart - Strike Rate & Average
            strike_rate = [
                player_data.get("SR_Test", 0),
                player_data.get("SR_ODI", 0),
                player_data.get("SR_T20", 0),
                player_data.get("SR_IPL", 0)
            ]
            batting_avg = [
                player_data.get("Avg_Test", 0),
                player_data.get("Avg_ODI", 0),
                player_data.get("Avg_T20", 0),
                player_data.get("Avg_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate")
            ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average")
            ax.set_ylabel("Value")
            ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
            ax.legend()
            st.pyplot(fig)
    
    if show_bowling:
        col1, col2 = st.columns(2)
        
        with col1:
            # Bar Chart - Economy Rate
            economy_rate = [
                player_data.get("Econ_Test", 0),
                player_data.get("Econ_ODI", 0),
                player_data.get("Econ_T20", 0),
                player_data.get("Econ_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.bar(labels, economy_rate, color=["purple", "orange", "cyan", "brown"])
            ax.set_ylabel("Economy Rate")
            ax.set_title(f"Economy Rate of {selected_player}")
            st.pyplot(fig)
        
        with col2:
            # Scatter Plot - Bowling Average & Strike Rate
            bowling_avg = [
                player_data.get("Bowl_Avg_Test", 0),
                player_data.get("Bowl_Avg_ODI", 0),
                player_data.get("Bowl_Avg_T20", 0),
                player_data.get("Bowl_Avg_IPL", 0)
            ]
            bowling_sr = [
                player_data.get("Bowl_SR_Test", 0),
                player_data.get("Bowl_SR_ODI", 0),
                player_data.get("Bowl_SR_T20", 0),
                player_data.get("Bowl_SR_IPL", 0)
            ]
            fig, ax = plt.subplots()
            ax.scatter(labels, bowling_avg, color='blue', label="Bowling Average")
            ax.scatter(labels, bowling_sr, color='red', label="Bowling Strike Rate")
            ax.set_ylabel("Value")
            ax.set_title(f"Bowling Average & Strike Rate of {selected_player}")
            ax.legend()
            st.pyplot(fig)