Cric_Metrics / pages /1player_information.py
Sathwikchowdary's picture
Update pages/1player_information.py
e148a04 verified
raw
history blame
6.62 kB
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
# Set page configuration
st.set_page_config(page_title="Career Insights", layout="wide")
# Load data
df = pd.read_csv("Team_Info.csv")
# Get unique player names
player_names = df["Player"].unique()
# Search box for filtering player names
search_query = st.text_input("Search Player Name:")
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names
# Player selection dropdown
selected_player = st.selectbox("Select Player", filtered_players)
# Buttons for Batting and Bowling
show_batting = st.button("Show Batting Stats")
show_bowling = st.button("Show Bowling Stats")
if selected_player:
player_data = df[df["Player"] == selected_player].iloc[0]
labels = ["Test", "ODI", "T20", "IPL"]
# **Batting Stats Section**
if show_batting:
st.subheader(f"Batting Statistics - {selected_player}")
col1, col2 = st.columns(2)
with col1:
# Pie Chart - Matches Played Across Formats
matches = [
player_data.get("Matches_Test", 0),
player_data.get("Matches_ODI", 0),
player_data.get("Matches_T20", 0),
player_data.get("Matches_IPL", 0)
]
fig, ax = plt.subplots()
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90)
ax.set_title(f"Matches Played by {selected_player}")
st.pyplot(fig)
with col2:
# Bar Chart - Runs Scored
batting_runs = [
player_data.get("batting_Runs_Test", 0),
player_data.get("batting_Runs_ODI", 0),
player_data.get("batting_Runs_T20", 0),
player_data.get("batting_Runs_IPL", 0)
]
fig, ax = plt.subplots()
ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"])
ax.set_ylabel("Runs Scored")
ax.set_title(f"Runs Scored by {selected_player}")
st.pyplot(fig)
col3, col4 = st.columns(2)
with col3:
# Bar Chart - 100s and 50s
hundreds = [
player_data.get("batting_100s_Test", 0),
player_data.get("batting_100s_ODI", 0),
player_data.get("batting_100s_T20", 0),
player_data.get("batting_100s_IPL", 0)
]
fifties = [
player_data.get("batting_50s_Test", 0),
player_data.get("batting_50s_ODI", 0),
player_data.get("batting_50s_T20", 0),
player_data.get("batting_50s_IPL", 0)
]
fig, ax = plt.subplots()
ax.bar(labels, hundreds, label="100s", color="gold")
ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds)
ax.set_ylabel("Count")
ax.set_title(f"Centuries & Fifties by {selected_player}")
ax.legend()
st.pyplot(fig)
with col4:
# Line Chart - Strike Rate & Average
strike_rate = [
player_data.get("batting_SR_Test", 0),
player_data.get("batting_SR_ODI", 0),
player_data.get("batting_SR_T20", 0),
player_data.get("batting_SR_IPL", 0)
]
batting_avg = [
player_data.get("batting_Average_Test", 0),
player_data.get("batting_Average_ODI", 0),
player_data.get("batting_Average_T20", 0),
player_data.get("batting_Average_IPL", 0)
]
fig, ax = plt.subplots()
ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate")
ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average")
ax.set_ylabel("Value")
ax.set_title(f"Strike Rate & Batting Average of {selected_player}")
ax.legend()
st.pyplot(fig)
# **Bowling Stats Section**
if show_bowling:
st.subheader(f"Bowling Statistics - {selected_player}")
col1, col2 = st.columns(2)
with col1:
# Pie Chart - Wickets Taken Across Formats
wickets = [
player_data.get("Wickets_Test", 0),
player_data.get("Wickets_ODI", 0),
player_data.get("Wickets_T20", 0),
player_data.get("Wickets_IPL", 0)
]
fig, ax = plt.subplots(figsize=(5, 3))
ax.pie(wickets, labels=labels, autopct="%1.1f%%", startangle=90)
ax.set_title(f"Wickets Taken by {selected_player}")
st.pyplot(fig)
with col2:
# Bar Chart - Economy Rate
economy_rate = [
player_data.get("Economy_Test", 0),
player_data.get("Economy_ODI", 0),
player_data.get("Economy_T20", 0),
player_data.get("Economy_IPL", 0)
]
fig, ax = plt.subplots(figsize=(5, 3))
ax.bar(labels, economy_rate, color=["gold", "green", "blue", "red"])
ax.set_ylabel("Economy Rate")
ax.set_title(f"Economy Rate of {selected_player}")
st.pyplot(fig)
col3, col4 = st.columns(2)
with col3:
# Bar Chart - Balls Bowled
balls_bowled = [
player_data.get("bowling_Balls_Test", 0),
player_data.get("bowling_Balls_ODI", 0),
player_data.get("bowling_Balls_T20", 0),
player_data.get("bowling_Balls_IPL", 0)
]
fig, ax = plt.subplots(figsize=(5, 3))
ax.bar(labels, balls_bowled, color=["red", "green", "blue", "purple"])
ax.set_ylabel("Balls Bowled")
ax.set_title(f"Balls Bowled by {selected_player}")
st.pyplot(fig)
with col4:
# Bar Chart - Maidens Bowled
maidens_bowled = [
player_data.get("bowling_Maidens_Test", 0),
player_data.get("bowling_Maidens_ODI", 0),
player_data.get("bowling_Maidens_T20", 0),
player_data.get("bowling_Maidens_IPL", 0)
]
fig, ax = plt.subplots(figsize=(5, 3))
ax.bar(labels, maidens_bowled, color=["cyan", "magenta", "yellow", "black"])
ax.set_ylabel("Maidens Bowled")
ax.set_title(f"Maidens Bowled by {selected_player}")
st.pyplot(fig)