Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# Set page configuration | |
st.set_page_config(page_title="Career Insights", layout="wide") | |
# Load data | |
df = pd.read_csv("Team_Info.csv") | |
# Get unique player names | |
player_names = df["Player"].unique() | |
# Search box for filtering player names | |
search_query = st.text_input("Search Player Name:") | |
filtered_players = [name for name in player_names if search_query.lower() in name.lower()] if search_query else player_names | |
# Player selection dropdown | |
selected_player = st.selectbox("Select Player", filtered_players) | |
# Buttons for Batting and Bowling | |
show_batting = st.button("Show Batting Stats") | |
show_bowling = st.button("Show Bowling Stats") | |
if selected_player: | |
player_data = df[df["Player"] == selected_player].iloc[0] | |
labels = ["Test", "ODI", "T20", "IPL"] | |
# **Batting Stats Section** | |
if show_batting: | |
st.subheader(f"Batting Statistics - {selected_player}") | |
col1, col2 = st.columns(2) | |
with col1: | |
# Pie Chart - Matches Played Across Formats | |
matches = [ | |
player_data.get("Matches_Test", 0), | |
player_data.get("Matches_ODI", 0), | |
player_data.get("Matches_T20", 0), | |
player_data.get("Matches_IPL", 0) | |
] | |
fig, ax = plt.subplots() | |
ax.pie(matches, labels=labels, autopct="%1.1f%%", startangle=90) | |
ax.set_title(f"Matches Played by {selected_player}") | |
st.pyplot(fig) | |
with col2: | |
# Bar Chart - Runs Scored | |
batting_runs = [ | |
player_data.get("batting_Runs_Test", 0), | |
player_data.get("batting_Runs_ODI", 0), | |
player_data.get("batting_Runs_T20", 0), | |
player_data.get("batting_Runs_IPL", 0) | |
] | |
fig, ax = plt.subplots() | |
ax.bar(labels, batting_runs, color=["gold", "green", "blue", "red"]) | |
ax.set_ylabel("Runs Scored") | |
ax.set_title(f"Runs Scored by {selected_player}") | |
st.pyplot(fig) | |
col3, col4 = st.columns(2) | |
with col3: | |
# Bar Chart - 100s and 50s | |
hundreds = [ | |
player_data.get("batting_100s_Test", 0), | |
player_data.get("batting_100s_ODI", 0), | |
player_data.get("batting_100s_T20", 0), | |
player_data.get("batting_100s_IPL", 0) | |
] | |
fifties = [ | |
player_data.get("batting_50s_Test", 0), | |
player_data.get("batting_50s_ODI", 0), | |
player_data.get("batting_50s_T20", 0), | |
player_data.get("batting_50s_IPL", 0) | |
] | |
fig, ax = plt.subplots() | |
ax.bar(labels, hundreds, label="100s", color="gold") | |
ax.bar(labels, fifties, label="50s", color="blue", bottom=hundreds) | |
ax.set_ylabel("Count") | |
ax.set_title(f"Centuries & Fifties by {selected_player}") | |
ax.legend() | |
st.pyplot(fig) | |
with col4: | |
# Line Chart - Strike Rate & Average | |
strike_rate = [ | |
player_data.get("batting_SR_Test", 0), | |
player_data.get("batting_SR_ODI", 0), | |
player_data.get("batting_SR_T20", 0), | |
player_data.get("batting_SR_IPL", 0) | |
] | |
batting_avg = [ | |
player_data.get("batting_Average_Test", 0), | |
player_data.get("batting_Average_ODI", 0), | |
player_data.get("batting_Average_T20", 0), | |
player_data.get("batting_Average_IPL", 0) | |
] | |
fig, ax = plt.subplots() | |
ax.plot(labels, strike_rate, marker='o', linestyle='-', color='red', label="Strike Rate") | |
ax.plot(labels, batting_avg, marker='s', linestyle='--', color='green', label="Batting Average") | |
ax.set_ylabel("Value") | |
ax.set_title(f"Strike Rate & Batting Average of {selected_player}") | |
ax.legend() | |
st.pyplot(fig) | |
# **Bowling Stats Section** | |
if show_bowling: | |
st.subheader(f"Bowling Statistics - {selected_player}") | |
col1, col2 = st.columns(2) | |
with col1: | |
# Pie Chart - Wickets Taken Across Formats | |
wickets = [ | |
player_data.get("Wickets_Test", 0), | |
player_data.get("Wickets_ODI", 0), | |
player_data.get("Wickets_T20", 0), | |
player_data.get("Wickets_IPL", 0) | |
] | |
fig, ax = plt.subplots(figsize=(5, 3)) | |
ax.pie(wickets, labels=labels, autopct="%1.1f%%", startangle=90) | |
ax.set_title(f"Wickets Taken by {selected_player}") | |
st.pyplot(fig) | |
with col2: | |
# Bar Chart - Economy Rate | |
economy_rate = [ | |
player_data.get("Economy_Test", 0), | |
player_data.get("Economy_ODI", 0), | |
player_data.get("Economy_T20", 0), | |
player_data.get("Economy_IPL", 0) | |
] | |
fig, ax = plt.subplots(figsize=(5, 3)) | |
ax.bar(labels, economy_rate, color=["gold", "green", "blue", "red"]) | |
ax.set_ylabel("Economy Rate") | |
ax.set_title(f"Economy Rate of {selected_player}") | |
st.pyplot(fig) | |
col3, col4 = st.columns(2) | |
with col3: | |
# Bar Chart - Balls Bowled | |
balls_bowled = [ | |
player_data.get("bowling_Balls_Test", 0), | |
player_data.get("bowling_Balls_ODI", 0), | |
player_data.get("bowling_Balls_T20", 0), | |
player_data.get("bowling_Balls_IPL", 0) | |
] | |
fig, ax = plt.subplots(figsize=(5, 3)) | |
ax.bar(labels, balls_bowled, color=["red", "green", "blue", "purple"]) | |
ax.set_ylabel("Balls Bowled") | |
ax.set_title(f"Balls Bowled by {selected_player}") | |
st.pyplot(fig) | |
with col4: | |
# Bar Chart - Maidens Bowled | |
maidens_bowled = [ | |
player_data.get("bowling_Maidens_Test", 0), | |
player_data.get("bowling_Maidens_ODI", 0), | |
player_data.get("bowling_Maidens_T20", 0), | |
player_data.get("bowling_Maidens_IPL", 0) | |
] | |
fig, ax = plt.subplots(figsize=(5, 3)) | |
ax.bar(labels, maidens_bowled, color=["cyan", "magenta", "yellow", "black"]) | |
ax.set_ylabel("Maidens Bowled") | |
ax.set_title(f"Maidens Bowled by {selected_player}") | |
st.pyplot(fig) | |