Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
st.title("PANDAS") | |
st.subheader("What is pandas?") | |
st.markdown("Pandas is a Python library used for working with data sets.") | |
st.markdown("It has functions for analyzing, cleaning, exploring, and manipulating data.") | |
st.markdown("The name Pandas has a reference to both Panel Data, and Python Data Analysis") | |
st.subheader("Why Use Pandas?") | |
st.markdown("Pandas allows us to analyze big data and make conclusions based on statistical theories.") | |
st.markdown("Pandas can clean messy data sets, and make them readable and relevant.") | |
st.markdown("Relevant data is very important in data science.") | |
st.subheader("What Can Pandas Do?") | |
st.markdown("Pandas gives you answers about the data. Like:") | |
st.write("Is there a correlation between two or more columns?") | |
st.markdown("What is average value?") | |
st.markdown("Max value?") | |
st.markdown("Min value?") | |
st.subheader("what is cleaning data:") | |
st.markdown("Pandas are also able to delete rows that are not relevant, or contains wrong values, like empty or NULL values. This is called cleaning the data.") | |
st.subheader("Installation of Pandas") | |
st.markdown("If you have Python and PIP already installed on a system, then installation of Pandas is very easy.") | |
st.markdown("or use a python distribution that already has Pandas installed like, Anaconda, Spyder etc.") | |
st.subheader("import pandas:") | |
st.markdown("Once Pandas is installed, import it in your applications by adding the import keyword:") | |
st.markdown("[import pandas]") | |
st.markdown("Now Pandas is imported and ready to use.") | |
st.subheader("Pandas as pd") | |
st.markdown("Pandas is usually imported under the pd alias.") | |
st.markdown("it is an alternate name of pandas") | |
st.markdown("instead of writing pandas we write pd") | |
st.subheader("Create an alias with the as keyword while importing:") | |
st.markdown("import pandas as pd") | |
st.markdown("Now the Pandas package can be referred to as pd instead of pandas.") | |
st.header("Pandas Series") | |
st.subheader("What is a Series?") | |
st.markdown("A Pandas Series is like a column in a table.") | |
st.markdown("It is a one-dimensional array holding data of any type.") | |
st.subheader("Example:") | |
st.markdown("Create a simple Pandas Series from a list:") | |
st.markdown("import pandas as pd") | |
st.markdown("a = [1, 7, 2]") | |
st.markdown("myvar = pd.Series(a)") | |
st.markdown("print(myvar)") | |
st.subheader("Output:") | |
st.markdown("0 , 1") | |
st.markdown("1 , 7") | |
st.markdown("2 , 2") | |
st.markdown("dtype: int64") | |
st.subheader("Labels:") | |
st.markdown("If nothing else is specified, the values are labeled with their index number. First value has index 0, second value has index 1 etc.") | |
st.markdown("This label can be used to access a specified value.") | |
st.subheader("Example:") | |
st.markdown("Return the first value of the Series:") | |
st.markdown("import pandas as pd") | |
st.markdown("a = [1, 7, 2]") | |
st.markdown("myvar = pd.Series(a)") | |
st.markdown("print(myvar[0])") | |
st.subheader("Output") | |
st.subheader("1") | |
st.subheader("Create Labels:") | |
st.markdown("with the index argument, you can name your own labels.") | |
st.subheader("Example:") | |
st.markdown("import pandas as pd") | |
st.markdown("a = [1, 7, 2]") | |
st.markdown("myvar = pd.Series a, index = [x, y, z]") | |
st.markdown("print(myvar)") | |
st.subheader("Output:") | |
st.markdown("x , 1") | |
st.markdown("y , 7") | |
st.markdown("z , 2") | |
st.markdown("dtype: int64") | |
st.markdown("When you have created labels, you can access an item by referring to the label.") | |
st.subheader("Example:") | |
st.markdown("Return the value of y:") | |
st.subheader("import pandas as pd") | |
st.markdown("a = [1, 7, 2]") | |
st.markdown("myvar = pd.Series(a, index = [x, y, z])") | |
st.markdown("print(myvar [y])") | |
st.subheader("Output:") | |
st.subheader("7") | |
st.subheader("Key/Value Objects as Series") | |
st.markdown("You can also use a key/value object, like a dictionary, when creating a Series.") | |
st.subheader("Example:") | |
st.markdown("Create a simple Pandas Series from a dictionary:") | |
st.markdown("import pandas as pd") | |
st.markdown("calories = day1 : 420, day2 : 380, day3 : 390") | |
st.markdown("myvar = pd.Series(calories)") | |
st.markdown("print(myvar)") | |
st.subheader("Output:") | |
st.markdown("day1 420") | |
st.markdown("day2 380") | |
st.markdown("day3 390") | |
st.markdown("dtype: int64") | |
st.markdown("Note: The keys of the dictionary become the labels.") | |
st.markdown("To select only some of the items in the dictionary, use the index argument and specify only the items you want to include in the Series.") | |
st.subheader("Example:") | |
st.markdown("import pandas as pd") | |
st.markdown("calories = day1 : 420, day2 : 380, day3 : 390") | |
st.markdown("myvar = pd.Series(calories, index = [day1, day2])") | |
st.markdown("print(myvar)") | |
st.subheader("Output:") | |
st.markdown("day1 , 420") | |
st.markdown("day2 , 380") | |
st.markdown("dtype: int64") | |
st.subheader("DataFrames:") | |
st.markdown("Data sets in Pandas are usually multi-dimensional tables, called DataFrames.") | |
st.markdown("Series is like a column, a DataFrame is the whole table.") | |
st.subheader("Example:") | |
st.markdown("Create a DataFrame from two Series:") | |
st.markdown("import pandas as pd") | |
st.markdown("data = {") | |
st.markdown("calories : [420, 380, 390],") | |
st.markdown("duration: [50, 40, 45]") | |
st.markdown("}") | |
st.markdown("myvar = pd.DataFrame(data)") | |
st.markdown("print(myvar)") | |
st.subheader("Output:") | |
st.markdown("calories duration") | |
st.markdown("0 , 420 , 50") | |
st.markdown("1 , 380 , 40") | |
st.markdown("2 , 390 , 45") |