Spaces:
Sleeping
Sleeping
Update pages/Life_cycle_of_ML.py
Browse files- pages/Life_cycle_of_ML.py +22 -18
pages/Life_cycle_of_ML.py
CHANGED
@@ -84,6 +84,8 @@ The life cycle of Machine Learning (ML) involves several stages, from defining t
|
|
84 |
</marker>
|
85 |
</defs>
|
86 |
</svg>
|
|
|
|
|
87 |
# Initialize session state for tracking the current lifecycle step
|
88 |
if "step" not in st.session_state:
|
89 |
st.session_state.step = 0
|
@@ -93,19 +95,19 @@ ml_lifecycle = [
|
|
93 |
{
|
94 |
"title": "1️⃣ **Problem Statement**",
|
95 |
"description": """
|
96 |
-
|
97 |
"""
|
98 |
},
|
99 |
{
|
100 |
"title": "2️⃣ **Data Collection**",
|
101 |
"description": """
|
102 |
-
|
103 |
"""
|
104 |
},
|
105 |
{
|
106 |
"title": "3️⃣ **Data Preparation**",
|
107 |
"description": """
|
108 |
-
|
109 |
- Steps:
|
110 |
- Handle missing values and outliers.
|
111 |
- Normalize or scale numerical features.
|
@@ -117,62 +119,68 @@ ml_lifecycle = [
|
|
117 |
{
|
118 |
"title": "4️⃣ **Feature Engineering**",
|
119 |
"description": """
|
120 |
-
|
121 |
- Techniques:
|
122 |
- Feature Selection: Choose the most important columns (e.g., using correlation).
|
123 |
- Feature Creation: Combine or transform existing features.
|
|
|
124 |
"""
|
125 |
},
|
126 |
{
|
127 |
"title": "5️⃣ **Model Selection**",
|
128 |
"description": """
|
129 |
-
|
130 |
- Factors to consider:
|
131 |
- Problem type: Classification, Regression, Clustering, etc.
|
132 |
- Data size and structure.
|
|
|
133 |
"""
|
134 |
},
|
135 |
{
|
136 |
"title": "6️⃣ **Training**",
|
137 |
"description": """
|
138 |
-
|
139 |
- Process:
|
140 |
- Split data into training and validation sets.
|
141 |
- Use the training data to fit the model.
|
|
|
142 |
"""
|
143 |
},
|
144 |
{
|
145 |
"title": "7️⃣ **Evaluation**",
|
146 |
"description": """
|
147 |
-
|
148 |
-
- Metrics:
|
149 |
- Classification: Accuracy, Precision, Recall, F1-Score.
|
150 |
- Regression: Mean Squared Error (MSE), R² Score.
|
|
|
151 |
"""
|
152 |
},
|
153 |
{
|
154 |
"title": "8️⃣ **Deployment**",
|
155 |
"description": """
|
156 |
-
|
157 |
- Steps:
|
158 |
- Create an API for model predictions.
|
159 |
- Monitor performance on real-world data.
|
|
|
160 |
"""
|
161 |
},
|
162 |
{
|
163 |
"title": "9️⃣ **Monitoring & Maintenance**",
|
164 |
"description": """
|
165 |
-
|
166 |
-
- Monitor:
|
167 |
- Data drift: Changes in data distribution.
|
168 |
-
- Model decay: Performance deterioration.
|
|
|
169 |
"""
|
170 |
},
|
171 |
]
|
172 |
|
173 |
# Display title and description
|
174 |
st.title("📊 Machine Learning Life Cycle")
|
175 |
-
st.write("Explore the detailed
|
176 |
|
177 |
# Buttons for navigation
|
178 |
col1, col2, col3 = st.columns([1, 1, 1])
|
@@ -190,8 +198,4 @@ st.markdown(current_step['description'])
|
|
190 |
|
191 |
# Reset button
|
192 |
if st.button("🔄 Restart"):
|
193 |
-
st.session_state.step = 0
|
194 |
-
"""
|
195 |
-
|
196 |
-
# Render HTML content in Streamlit
|
197 |
-
st.markdown(html_content, unsafe_allow_html=True)
|
|
|
84 |
</marker>
|
85 |
</defs>
|
86 |
</svg>
|
87 |
+
st.markdown(html_content, unsafe_allow_html=True)
|
88 |
+
|
89 |
# Initialize session state for tracking the current lifecycle step
|
90 |
if "step" not in st.session_state:
|
91 |
st.session_state.step = 0
|
|
|
95 |
{
|
96 |
"title": "1️⃣ **Problem Statement**",
|
97 |
"description": """
|
98 |
+
**Goal**:
|
99 |
"""
|
100 |
},
|
101 |
{
|
102 |
"title": "2️⃣ **Data Collection**",
|
103 |
"description": """
|
104 |
+
**Goal**:
|
105 |
"""
|
106 |
},
|
107 |
{
|
108 |
"title": "3️⃣ **Data Preparation**",
|
109 |
"description": """
|
110 |
+
**Goal**: Clean and preprocess the data to make it usable.
|
111 |
- Steps:
|
112 |
- Handle missing values and outliers.
|
113 |
- Normalize or scale numerical features.
|
|
|
119 |
{
|
120 |
"title": "4️⃣ **Feature Engineering**",
|
121 |
"description": """
|
122 |
+
**Goal**: Select or create the most relevant features for the model.
|
123 |
- Techniques:
|
124 |
- Feature Selection: Choose the most important columns (e.g., using correlation).
|
125 |
- Feature Creation: Combine or transform existing features.
|
126 |
+
- Example: Extracting 'time spent on website' as a feature from raw session logs.
|
127 |
"""
|
128 |
},
|
129 |
{
|
130 |
"title": "5️⃣ **Model Selection**",
|
131 |
"description": """
|
132 |
+
**Goal**: Choose the right ML algorithm for your problem.
|
133 |
- Factors to consider:
|
134 |
- Problem type: Classification, Regression, Clustering, etc.
|
135 |
- Data size and structure.
|
136 |
+
- Example: Using Logistic Regression for binary classification (e.g., spam detection).
|
137 |
"""
|
138 |
},
|
139 |
{
|
140 |
"title": "6️⃣ **Training**",
|
141 |
"description": """
|
142 |
+
**Goal**: Train the ML model using training data.
|
143 |
- Process:
|
144 |
- Split data into training and validation sets.
|
145 |
- Use the training data to fit the model.
|
146 |
+
- Example: Training a Random Forest on customer purchase data.
|
147 |
"""
|
148 |
},
|
149 |
{
|
150 |
"title": "7️⃣ **Evaluation**",
|
151 |
"description": """
|
152 |
+
**Goal**: Assess the model's performance using metrics.
|
153 |
+
- Common Metrics:
|
154 |
- Classification: Accuracy, Precision, Recall, F1-Score.
|
155 |
- Regression: Mean Squared Error (MSE), R² Score.
|
156 |
+
- Example: Evaluating a churn prediction model using accuracy on the test set.
|
157 |
"""
|
158 |
},
|
159 |
{
|
160 |
"title": "8️⃣ **Deployment**",
|
161 |
"description": """
|
162 |
+
**Goal**: Integrate the trained model into a production environment.
|
163 |
- Steps:
|
164 |
- Create an API for model predictions.
|
165 |
- Monitor performance on real-world data.
|
166 |
+
- Example: Deploying a sentiment analysis model as a REST API.
|
167 |
"""
|
168 |
},
|
169 |
{
|
170 |
"title": "9️⃣ **Monitoring & Maintenance**",
|
171 |
"description": """
|
172 |
+
**Goal**: Ensure the model continues to perform well over time.
|
173 |
+
- Monitor for:
|
174 |
- Data drift: Changes in data distribution.
|
175 |
+
- Model decay: Performance deterioration.
|
176 |
+
- Example: Regularly retraining a sales forecasting model with new data.
|
177 |
"""
|
178 |
},
|
179 |
]
|
180 |
|
181 |
# Display title and description
|
182 |
st.title("📊 Machine Learning Life Cycle")
|
183 |
+
st.write("Explore the detailed life cycle of a Machine Learning project by clicking through the steps below:")
|
184 |
|
185 |
# Buttons for navigation
|
186 |
col1, col2, col3 = st.columns([1, 1, 1])
|
|
|
198 |
|
199 |
# Reset button
|
200 |
if st.button("🔄 Restart"):
|
201 |
+
st.session_state.step = 0
|
|
|
|
|
|
|
|