Spaces:
Sleeping
Sleeping
Delete pages/15KNN Alogrithm.py
Browse files- pages/15KNN Alogrithm.py +0 -137
pages/15KNN Alogrithm.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
# Page configuration
|
4 |
-
st.set_page_config(page_title="KNN Overview", page_icon="📊", layout="wide")
|
5 |
-
|
6 |
-
# Custom CSS styling for a cleaner, light-colored interface
|
7 |
-
st.markdown("""
|
8 |
-
<style>
|
9 |
-
.stApp {
|
10 |
-
background-color: #f2f6fa;
|
11 |
-
}
|
12 |
-
h1, h2, h3 {
|
13 |
-
color: #1a237e;
|
14 |
-
}
|
15 |
-
.custom-font, p {
|
16 |
-
font-family: 'Arial', sans-serif;
|
17 |
-
font-size: 18px;
|
18 |
-
color: #212121;
|
19 |
-
line-height: 1.6;
|
20 |
-
}
|
21 |
-
</style>
|
22 |
-
""", unsafe_allow_html=True)
|
23 |
-
|
24 |
-
# Title
|
25 |
-
st.markdown("<h1 style='color: #1a237e;'>Understanding K-Nearest Neighbors (KNN)</h1>", unsafe_allow_html=True)
|
26 |
-
|
27 |
-
# Introduction to KNN
|
28 |
-
st.write("""
|
29 |
-
K-Nearest Neighbors (KNN) is a fundamental machine learning method suitable for both **classification** and **regression** problems. It makes predictions by analyzing the `K` closest data points in the training set.
|
30 |
-
|
31 |
-
Key features:
|
32 |
-
- KNN is a non-parametric model.
|
33 |
-
- It memorizes training data instead of learning a model.
|
34 |
-
- Distance metrics like **Euclidean** help determine similarity between data points.
|
35 |
-
""")
|
36 |
-
|
37 |
-
# How KNN Works
|
38 |
-
st.markdown("<h2 style='color: #1a237e;'>How KNN Functions</h2>", unsafe_allow_html=True)
|
39 |
-
|
40 |
-
st.subheader("Training Phase")
|
41 |
-
st.write("""
|
42 |
-
- KNN doesn't train a model in the traditional sense.
|
43 |
-
- It stores the dataset and uses it during prediction.
|
44 |
-
""")
|
45 |
-
|
46 |
-
st.subheader("Prediction - Classification")
|
47 |
-
st.write("""
|
48 |
-
1. Set the value of `k`.
|
49 |
-
2. Calculate the distance between the input and each point in the training data.
|
50 |
-
3. Identify the `k` nearest neighbors.
|
51 |
-
4. Use majority voting to assign the class label.
|
52 |
-
""")
|
53 |
-
|
54 |
-
st.subheader("Prediction - Regression")
|
55 |
-
st.write("""
|
56 |
-
1. Choose `k`.
|
57 |
-
2. Find the distances to all training points.
|
58 |
-
3. Pick the closest `k` neighbors.
|
59 |
-
4. Predict using the **average** or **weighted average** of their values.
|
60 |
-
""")
|
61 |
-
|
62 |
-
# Overfitting and Underfitting
|
63 |
-
st.subheader("Model Behavior")
|
64 |
-
st.write("""
|
65 |
-
- **Overfitting**: Occurs when the model captures noise by using very low values of `k`.
|
66 |
-
- **Underfitting**: Happens when the model oversimplifies, often with high `k` values.
|
67 |
-
- **Optimal Fit**: Found by balancing both, often using cross-validation.
|
68 |
-
""")
|
69 |
-
|
70 |
-
# Training vs CV Error
|
71 |
-
st.subheader("Error Analysis")
|
72 |
-
st.write("""
|
73 |
-
- **Training Error**: Error on the dataset used for fitting.
|
74 |
-
- **Cross-Validation Error**: Error on separate validation data.
|
75 |
-
- Ideal models show low error in both.
|
76 |
-
""")
|
77 |
-
|
78 |
-
# Hyperparameter Tuning
|
79 |
-
st.subheader("Hyperparameter Choices")
|
80 |
-
st.write("""
|
81 |
-
Important tuning options for KNN include:
|
82 |
-
- `k`: Number of neighbors
|
83 |
-
- `weights`: `uniform` or `distance`
|
84 |
-
- `metric`: Distance formula like Euclidean or Manhattan
|
85 |
-
- `n_jobs`: Parallel processing support
|
86 |
-
""")
|
87 |
-
|
88 |
-
# Scaling
|
89 |
-
st.subheader("Why Scaling is Crucial")
|
90 |
-
st.write("""
|
91 |
-
KNN relies heavily on distances, so it's essential to scale features. Use:
|
92 |
-
- **Min-Max Normalization** to compress values between 0 and 1.
|
93 |
-
- **Z-score Standardization** to center data.
|
94 |
-
|
95 |
-
Always scale training and testing data separately.
|
96 |
-
""")
|
97 |
-
|
98 |
-
# Weighted KNN
|
99 |
-
st.subheader("Weighted KNN")
|
100 |
-
st.write("""
|
101 |
-
In Weighted KNN, closer neighbors have more influence on the result. It improves accuracy, especially in noisy or uneven data.
|
102 |
-
""")
|
103 |
-
|
104 |
-
# Decision Regions
|
105 |
-
st.subheader("Decision Boundaries")
|
106 |
-
st.write("""
|
107 |
-
KNN creates boundaries based on training data:
|
108 |
-
- Small `k` = complex, sensitive regions (risk of overfitting).
|
109 |
-
- Large `k` = smoother regions (risk of underfitting).
|
110 |
-
""")
|
111 |
-
|
112 |
-
# Cross Validation
|
113 |
-
st.subheader("Cross-Validation")
|
114 |
-
st.write("""
|
115 |
-
Cross-validation helps evaluate models effectively. For example:
|
116 |
-
- **K-Fold CV** divides data into parts and tests each part.
|
117 |
-
- Ensures model generalization.
|
118 |
-
""")
|
119 |
-
|
120 |
-
# Hyperparameter Optimization Techniques
|
121 |
-
st.subheader("Tuning Methods")
|
122 |
-
st.write("""
|
123 |
-
- **Grid Search**: Tests all combinations of parameters.
|
124 |
-
- **Random Search**: Picks random combinations for faster tuning.
|
125 |
-
- **Bayesian Search**: Uses previous results to make better guesses on parameter selection.
|
126 |
-
""")
|
127 |
-
|
128 |
-
# Notebook Link
|
129 |
-
st.markdown("<h2 style='color: #1a237e;'>KNN Implementation Notebook</h2>", unsafe_allow_html=True)
|
130 |
-
st.markdown(
|
131 |
-
"<a href='https://colab.research.google.com/drive/11wk6wt7sZImXhTqzYrre3ic4oj3KFC4M?usp=sharing' target='_blank' style='font-size: 16px; color: #1a237e;'>Click here to open the Colab notebook</a>",
|
132 |
-
unsafe_allow_html=True
|
133 |
-
)
|
134 |
-
|
135 |
-
st.write("""
|
136 |
-
KNN is intuitive and effective when combined with proper preprocessing and hyperparameter tuning. Use cross-validation to find the sweet spot and avoid overfitting or underfitting.
|
137 |
-
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|