|
|
|
|
|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import mediapipe as mp |
|
from sklearn.linear_model import LinearRegression |
|
import random |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) |
|
|
|
def extract_features(image, landmarks): |
|
mean_intensity = np.mean(image) |
|
h, w, _ = image.shape |
|
|
|
bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks) |
|
bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks) |
|
|
|
def dist(p1, p2): |
|
return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5 |
|
|
|
eye_dist = dist(landmarks[33], landmarks[263]) |
|
nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98]) |
|
jaw_width = dist(landmarks[234], landmarks[454]) |
|
|
|
left_cheek = landmarks[234] |
|
right_cheek = landmarks[454] |
|
cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h) |
|
cx2, cy2 = int(right_cheek.x * w), int(right_cheek.y * h) |
|
skin_tone1 = np.mean(image[cy1-5:cy1+5, cx1-5:cx1+5]) if 5 <= cy1 < h-5 and 5 <= cx1 < w-5 else 0 |
|
skin_tone2 = np.mean(image[cy2-5:cy2+5, cx2-5:cx2+5]) if 5 <= cy2 < h-5 and 5 <= cx2 < w-5 else 0 |
|
avg_skin_tone = (skin_tone1 + skin_tone2) / 2 |
|
|
|
return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone] |
|
|
|
def train_model(output_range): |
|
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2), |
|
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), |
|
random.uniform(0.2, 0.5)] for _ in range(100)] |
|
y = [random.uniform(*output_range) for _ in X] |
|
model = LinearRegression().fit(X, y) |
|
return model |
|
|
|
models = { |
|
"Hemoglobin": train_model((13.5, 17.5)), |
|
"WBC Count": train_model((4.0, 11.0)), |
|
"Platelet Count": train_model((150, 450)), |
|
"Iron": train_model((60, 170)), |
|
"Ferritin": train_model((30, 300)), |
|
"TIBC": train_model((250, 400)), |
|
"Bilirubin": train_model((0.3, 1.2)), |
|
"Creatinine": train_model((0.6, 1.2)), |
|
"Urea": train_model((7, 20)), |
|
"Sodium": train_model((135, 145)), |
|
"Potassium": train_model((3.5, 5.1)), |
|
"TSH": train_model((0.4, 4.0)), |
|
"Cortisol": train_model((5, 25)), |
|
"FBS": train_model((70, 110)), |
|
"HbA1c": train_model((4.0, 5.7)), |
|
"Albumin": train_model((3.5, 5.5)), |
|
"BP Systolic": train_model((90, 120)), |
|
"BP Diastolic": train_model((60, 80)), |
|
"Temperature": train_model((97, 99)) |
|
} |
|
|
|
def get_risk_color(value, normal_range): |
|
low, high = normal_range |
|
if value < low: |
|
return ("Low", "π»", "#FFCCCC") |
|
elif value > high: |
|
return ("High", "πΊ", "#FFE680") |
|
else: |
|
return ("Normal", "β
", "#CCFFCC") |
|
|
|
def build_table(title, rows): |
|
html = ( |
|
f'<div style="margin-bottom: 24px;">' |
|
f'<h4 style="margin: 8px 0;">{title}</h4>' |
|
f'<table style="width:100%; border-collapse:collapse;">' |
|
f'<thead><tr style="background:#f0f0f0;"><th style="padding:8px;border:1px solid #ccc;">Test</th><th style="padding:8px;border:1px solid #ccc;">Result</th><th style="padding:8px;border:1px solid #ccc;">Expected Range</th><th style="padding:8px;border:1px solid #ccc;">Level</th></tr></thead><tbody>' |
|
) |
|
for label, value, ref in rows: |
|
level, icon, bg = get_risk_color(value, ref) |
|
html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} β {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>' |
|
html += '</tbody></table></div>' |
|
return html |
|
|