SuriRaja commited on
Commit
360e696
·
verified ·
1 Parent(s): 46d6b04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -136
app.py CHANGED
@@ -17,15 +17,13 @@ def extract_features(image, landmarks):
17
  bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks)
18
  bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks)
19
 
20
- # Compute facial region ratios (eye distance, nose length, jaw width, etc.)
21
  def dist(p1, p2):
22
  return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5
23
 
24
- eye_dist = dist(landmarks[33], landmarks[263]) # between left and right eye
25
- nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98]) # bridge + tip
26
  jaw_width = dist(landmarks[234], landmarks[454])
27
 
28
- # Skin tone analysis from cheeks
29
  left_cheek = landmarks[234]
30
  right_cheek = landmarks[454]
31
  cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h)
@@ -37,12 +35,13 @@ def extract_features(image, landmarks):
37
  return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone]
38
 
39
  def train_model(output_range):
40
- X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2)] for _ in range(100)]
 
 
41
  y = [random.uniform(*output_range) for _ in X]
42
  model = LinearRegression().fit(X, y)
43
  return model
44
 
45
- # Train models for all tests
46
  models = {
47
  "Hemoglobin": train_model((13.5, 17.5)),
48
  "WBC Count": train_model((4.0, 11.0)),
@@ -65,22 +64,6 @@ models = {
65
  "Temperature": train_model((97, 99))
66
  }
67
 
68
- def estimate_heart_rate(frame, landmarks):
69
- h, w, _ = frame.shape
70
- forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]]
71
- mask = np.zeros((h, w), dtype=np.uint8)
72
- pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32)
73
- cv2.fillConvexPoly(mask, pts, 255)
74
- green_channel = cv2.split(frame)[1]
75
- mean_intensity = cv2.mean(green_channel, mask=mask)[0]
76
- heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi))
77
- return heart_rate
78
-
79
- def estimate_spo2_rr(heart_rate):
80
- spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2)))
81
- rr = int(12 + abs(heart_rate % 5 - 2))
82
- return spo2, rr
83
-
84
  def get_risk_color(value, normal_range):
85
  low, high = normal_range
86
  if value < low:
@@ -102,117 +85,3 @@ def build_table(title, rows):
102
  html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} – {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>'
103
  html += '</tbody></table></div>'
104
  return html
105
-
106
- def analyze_face(image):
107
- if image is None:
108
- return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
109
-
110
- frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
111
- result = face_mesh.process(frame_rgb)
112
- if not result.multi_face_landmarks:
113
- return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
114
-
115
- landmarks = result.multi_face_landmarks[0].landmark
116
- heart_rate = estimate_heart_rate(frame_rgb, landmarks)
117
- spo2, rr = estimate_spo2_rr(heart_rate)
118
-
119
- features = extract_features(frame_rgb, landmarks)
120
-
121
- hb = models["Hemoglobin"].predict([features])[0]
122
- wbc = models["WBC Count"].predict([features])[0]
123
- platelets = models["Platelet Count"].predict([features])[0]
124
- iron = models["Iron"].predict([features])[0]
125
- ferritin = models["Ferritin"].predict([features])[0]
126
- tibc = models["TIBC"].predict([features])[0]
127
- bilirubin = models["Bilirubin"].predict([features])[0]
128
- creatinine = models["Creatinine"].predict([features])[0]
129
- urea = models["Urea"].predict([features])[0]
130
- sodium = models["Sodium"].predict([features])[0]
131
- potassium = models["Potassium"].predict([features])[0]
132
- tsh = models["TSH"].predict([features])[0]
133
- cortisol = models["Cortisol"].predict([features])[0]
134
- fbs = models["FBS"].predict([features])[0]
135
- hba1c = models["HbA1c"].predict([features])[0]
136
- albumin = models["Albumin"].predict([features])[0]
137
- bp_sys = models["BP Systolic"].predict([features])[0]
138
- bp_dia = models["BP Diastolic"].predict([features])[0]
139
- temperature = models["Temperature"].predict([features])[0]
140
-
141
- html_output = "".join([
142
- build_table("🩸 Hematology", [("Hemoglobin", hb, (13.5, 17.5)), ("WBC Count", wbc, (4.0, 11.0)), ("Platelet Count", platelets, (150, 450))]),
143
- build_table("🧬 Iron Panel", [("Iron", iron, (60, 170)), ("Ferritin", ferritin, (30, 300)), ("TIBC", tibc, (250, 400))]),
144
- build_table("🧬 Liver & Kidney", [("Bilirubin", bilirubin, (0.3, 1.2)), ("Creatinine", creatinine, (0.6, 1.2)), ("Urea", urea, (7, 20))]),
145
- build_table("🧪 Electrolytes", [("Sodium", sodium, (135, 145)), ("Potassium", potassium, (3.5, 5.1))]),
146
- build_table("🧁 Metabolic & Thyroid", [("Fasting Blood Sugar", fbs, (70, 110)), ("HbA1c", hba1c, (4.0, 5.7)), ("TSH", tsh, (0.4, 4.0))]),
147
- build_table("❤️ Vitals", [("SpO2", spo2, (95, 100)), ("Heart Rate", heart_rate, (60, 100)), ("Respiratory Rate", rr, (12, 20)), ("Temperature", temperature, (97, 99)), ("BP Systolic", bp_sys, (90, 120)), ("BP Diastolic", bp_dia, (60, 80))]),
148
- build_table("🩹 Other Indicators", [("Cortisol", cortisol, (5, 25)), ("Albumin", albumin, (3.5, 5.5))])
149
- ])
150
-
151
- summary = "<div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#fcfcfc;'>"
152
- summary += "<h4>📝 Summary for You</h4><ul>"
153
- if hb < 13.5:
154
- summary += "<li>Your hemoglobin is a bit low — this could mean mild anemia. Consider a CBC test and iron supplements.</li>"
155
- if iron < 60 or ferritin < 30:
156
- summary += "<li>Signs of low iron storage detected. An iron profile blood test is recommended.</li>"
157
- if bilirubin > 1.2:
158
- summary += "<li>Some signs of jaundice were detected. Please consult for a Liver Function Test (LFT).</li>"
159
- if hba1c > 5.7:
160
- summary += "<li>Your HbA1c is slightly elevated — this can signal pre-diabetes. A fasting glucose test may help.</li>"
161
- if spo2 < 95:
162
- summary += "<li>Oxygen levels appear below normal. Please recheck with a pulse oximeter if symptoms persist.</li>"
163
- summary += "</ul><p><strong>💡 Tip:</strong> This is an AI-based screening and should be followed up with a lab visit for confirmation.</p></div>"
164
-
165
- html_output += summary
166
-
167
- html_output += "<br><div style='margin-top:20px;padding:12px;border:2px solid #2d87f0;background:#f2faff;text-align:center;border-radius:8px;'>"
168
- html_output += "<h4>📞 Book a Lab Test</h4>"
169
- html_output += "<p>Prefer to get your tests confirmed at a nearby center? Click below to find certified labs in your area.</p>"
170
- html_output += "<button style='padding:10px 20px;background:#007BFF;color:#fff;border:none;border-radius:5px;cursor:pointer;'>Find Labs Near Me</button>"
171
- html_output += "</div>"
172
-
173
- lang_blocks = """
174
- <div style='margin-top:20px;padding:12px;border:1px dashed #999;background:#f9f9f9;'>
175
- <h4>🗣️ Summary in Your Language</h4>
176
- <details><summary><b>Hindi</b></summary><ul>
177
- <li>आपका हीमोग्लोबिन थोड़ा कम है — यह हल्के एनीमिया का संकेत हो सकता है। कृपया CBC और आयरन टेस्ट करवाएं।</li>
178
- <li>लो आयरन स्टोरेज देखा गया है। एक आयरन प्रोफाइल टेस्ट की सिफारिश की जाती है।</li>
179
- <li>जॉन्डिस के लक्षण देखे गए हैं। कृपया LFT करवाएं।</li>
180
- <li>HbA1c थोड़ा बढ़ा हुआ है — यह प्री-डायबिटीज़ का संकेत हो सकता है।</li>
181
- <li>ऑक्सीजन स्तर कम दिख रहा है। पल्स ऑक्सीमीटर से दोबारा जांचें।</li>
182
- </ul></details>
183
-
184
- <details><summary><b>Telugu</b></summary><ul>
185
- <li>మీ హిమోగ్లోబిన్ కొంచెం తక్కువగా ఉంది — ఇది తేలికపాటి అనీమియా సూచించవచ్చు. CBC, Iron పరీక్ష చేయించండి.</li>
186
- <li>Iron నిల్వలు తక్కువగా కనిపించాయి. Iron ప్రొఫైల్ బ్లడ్ టెస్ట్ చేయించండి.</li>
187
- <li>జాండీస్ సంకేతాలు గుర్తించబడ్డాయి. LFT చేయించండి.</li>
188
- <li>HbA1c కొంచెం పెరిగింది — ఇది ప్రీ-డయాబెటిస్ సూచించవచ్చు.</li>
189
- <li>ఆక్సిజన్ స్థాయి తక్కువగా ఉంది. తిరిగి పరీక్షించండి.</li>
190
- </ul></details>
191
- </div>
192
- """
193
-
194
- html_output += lang_blocks
195
- return html_output, frame_rgb
196
-
197
- with gr.Blocks() as demo:
198
- gr.Markdown("""
199
- # 🧠 Face-Based Lab Test AI Report
200
- Upload a face photo to infer health diagnostics with AI-based visual markers.
201
- """)
202
-
203
- with gr.Row():
204
- with gr.Column(scale=1):
205
- image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
206
- submit_btn = gr.Button("🔍 Analyze")
207
- with gr.Column(scale=2):
208
- result_html = gr.HTML(label="🧪 Health Report Table")
209
- result_image = gr.Image(label="📷 Face Scan Annotated")
210
-
211
- submit_btn.click(fn=analyze_face, inputs=image_input, outputs=[result_html, result_image])
212
-
213
- gr.Markdown("""
214
- ---
215
- ✅ Table Format • AI-Powered Prediction • 30 Tests Integrated
216
- """)
217
-
218
- demo.launch()
 
17
  bbox_width = max(pt.x for pt in landmarks) - min(pt.x for pt in landmarks)
18
  bbox_height = max(pt.y for pt in landmarks) - min(pt.y for pt in landmarks)
19
 
 
20
  def dist(p1, p2):
21
  return ((p1.x - p2.x)**2 + (p1.y - p2.y)**2) ** 0.5
22
 
23
+ eye_dist = dist(landmarks[33], landmarks[263])
24
+ nose_len = dist(landmarks[1], landmarks[2]) + dist(landmarks[2], landmarks[98])
25
  jaw_width = dist(landmarks[234], landmarks[454])
26
 
 
27
  left_cheek = landmarks[234]
28
  right_cheek = landmarks[454]
29
  cx1, cy1 = int(left_cheek.x * w), int(left_cheek.y * h)
 
35
  return [mean_intensity, bbox_width, bbox_height, eye_dist, nose_len, jaw_width, avg_skin_tone]
36
 
37
  def train_model(output_range):
38
+ X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2),
39
+ random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5),
40
+ random.uniform(0.2, 0.5)] for _ in range(100)]
41
  y = [random.uniform(*output_range) for _ in X]
42
  model = LinearRegression().fit(X, y)
43
  return model
44
 
 
45
  models = {
46
  "Hemoglobin": train_model((13.5, 17.5)),
47
  "WBC Count": train_model((4.0, 11.0)),
 
64
  "Temperature": train_model((97, 99))
65
  }
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  def get_risk_color(value, normal_range):
68
  low, high = normal_range
69
  if value < low:
 
85
  html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} – {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>'
86
  html += '</tbody></table></div>'
87
  return html