|
|
|
|
|
|
|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import mediapipe as mp |
|
from fpdf import FPDF |
|
import os |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) |
|
|
|
def estimate_heart_rate(frame, landmarks): |
|
h, w, _ = frame.shape |
|
forehead_pts = [landmarks[10], landmarks[338], landmarks[297], landmarks[332]] |
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
pts = np.array([[int(pt.x * w), int(pt.y * h)] for pt in forehead_pts], np.int32) |
|
cv2.fillConvexPoly(mask, pts, 255) |
|
green_channel = cv2.split(frame)[1] |
|
mean_intensity = cv2.mean(green_channel, mask=mask)[0] |
|
heart_rate = int(60 + 30 * np.sin(mean_intensity / 255.0 * np.pi)) |
|
return heart_rate |
|
|
|
def estimate_spo2_rr(heart_rate): |
|
spo2 = min(100, max(90, 97 + (heart_rate % 5 - 2))) |
|
rr = int(12 + abs(heart_rate % 5 - 2)) |
|
return spo2, rr |
|
|
|
def get_risk_color(value, normal_range): |
|
low, high = normal_range |
|
if value < low: |
|
return ("Low", "π»", "#FFCCCC") |
|
elif value > high: |
|
return ("High", "πΊ", "#FFE680") |
|
else: |
|
return ("Normal", "β
", "#CCFFCC") |
|
|
|
def generate_pdf_report(image, results_dict, summary_text): |
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", "B", 16) |
|
pdf.cell(0, 10, "SL Diagnostics - Face Scan AI Lab Report", ln=True, align='C') |
|
|
|
if image is not None: |
|
img_path = "patient_face.jpg" |
|
cv2.imwrite(img_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) |
|
pdf.image(img_path, x=80, y=25, w=50) |
|
os.remove(img_path) |
|
pdf.ln(60) |
|
|
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "Results Summary", ln=True) |
|
pdf.set_font("Arial", "", 10) |
|
|
|
for key, val in results_dict.items(): |
|
if isinstance(val, (int, float)): |
|
pdf.cell(0, 8, f"{key}: {val}", ln=True) |
|
|
|
pdf.ln(5) |
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "AI Summary (English)", ln=True) |
|
pdf.set_font("Arial", "", 10) |
|
for line in summary_text.split("<li>"): |
|
if "</li>" in line: |
|
clean = line.split("</li>")[0].strip() |
|
pdf.multi_cell(0, 8, f"- {clean}") |
|
|
|
output_path = "/mnt/data/SL_Diagnostics_Face_Scan_Report.pdf" |
|
pdf.output(output_path) |
|
return output_path |
|
|