Spaces:
Runtime error
Runtime error
# app.py | |
import streamlit as st | |
from PIL import Image | |
import torch | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
# App title and instructions | |
st.set_page_config(page_title="Skin Condition Classifier", layout="centered") | |
st.title("π§ AI Skin Condition Classifier") | |
st.markdown("Upload a **clear photo** of the skin condition to receive AI-powered predictions.") | |
# Image uploader | |
uploaded_file = st.file_uploader("π· Upload a skin image", type=["jpg", "jpeg", "png"]) | |
# Load the pre-trained model | |
def load_model(): | |
model_name = "Anwarkh1/Skin_Cancer-Image_Classification" | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
model = AutoModelForImageClassification.from_pretrained(model_name) | |
return processor, model | |
processor, model = load_model() | |
# Handle image upload and prediction | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert("RGB") | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = torch.nn.functional.softmax(logits, dim=1)[0] | |
# Top 3 predictions | |
top_probs, top_indices = torch.topk(probs, k=3) | |
class_labels = model.config.id2label | |
st.subheader("π§Ύ Prediction Results") | |
for idx, prob in zip(top_indices, top_probs): | |
label = class_labels[idx.item()] | |
st.write(f"**{label}** β {prob.item() * 100:.2f}%") | |
st.info("π Note: This tool is for supportive use only. Please consult a dermatologist for a medical diagnosis.") | |