|
import streamlit as st |
|
import os |
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.embeddings import HuggingFaceBgeEmbeddings |
|
from langchain_community.llms import Together |
|
from langchain.chains import create_retrieval_chain, create_history_aware_retriever, LLMChain |
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.chat_message_histories import StreamlitChatMessageHistory |
|
import time |
|
|
|
|
|
model_name = "BAAI/bge-base-en" |
|
encode_kwargs = {'normalize_embeddings': True} |
|
|
|
embedding_function = HuggingFaceBgeEmbeddings( |
|
model_name=model_name, |
|
encode_kwargs=encode_kwargs |
|
) |
|
|
|
|
|
llm = Together( |
|
model="mistralai/Mixtral-8x22B-Instruct-v0.1", |
|
temperature=0.2, |
|
max_tokens=19096, |
|
top_k=10, |
|
together_api_key=os.environ['pilotikval'] |
|
) |
|
|
|
|
|
llmc = Together( |
|
model="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
temperature=0.2, |
|
max_tokens=1024, |
|
top_k=1, |
|
together_api_key=os.environ['pilotikval'] |
|
) |
|
|
|
msgs = StreamlitChatMessageHistory(key="langchain_messages") |
|
memory = ConversationBufferMemory(chat_memory=msgs, memory_key="chat_history", return_messages=True) |
|
|
|
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}") |
|
|
|
def _combine_documents( |
|
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n" |
|
): |
|
doc_strings = [format_document(doc, document_prompt) for doc in docs] |
|
return document_separator.join(doc_strings) |
|
|
|
chistory = [] |
|
|
|
def store_chat_history(role: str, content: str): |
|
chistory.append({"role": role, "content": content}) |
|
|
|
def app(): |
|
with st.sidebar: |
|
st.title("dochatter") |
|
option = st.selectbox( |
|
'Which retriever would you like to use?', |
|
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine') |
|
) |
|
if option == 'RespiratoryFishman': |
|
persist_directory = "./respfishmandbcud/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
elif option == 'RespiratoryMurray': |
|
persist_directory = "./respmurray/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
elif option == 'MedMRCP2': |
|
persist_directory = "./medmrcp2store/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
elif option == 'General Medicine': |
|
persist_directory = "./oxfordmedbookdir/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 7}) |
|
else: |
|
persist_directory = "./mrcpchromadb/" |
|
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes") |
|
retriever = vectordb.as_retriever(search_kwargs={"k": 5}) |
|
|
|
if "messages" not in st.session_state.keys(): |
|
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] |
|
|
|
condense_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question which contains the themes of the conversation. |
|
Chat History: |
|
{chat_history} |
|
Follow-Up Input: {question} |
|
Standalone question:""" |
|
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template) |
|
|
|
answer_template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context: |
|
{context} |
|
Question: {question}""" |
|
ANSWER_PROMPT = ChatPromptTemplate.from_template(answer_template) |
|
|
|
question_generator_chain = LLMChain(llm=llmc, prompt=CONDENSE_QUESTION_PROMPT) |
|
combine_docs_chain = LLMChain(llm=llm, prompt=ANSWER_PROMPT) |
|
|
|
history_aware_retriever = create_history_aware_retriever( |
|
llm=llmc, |
|
retriever=retriever, |
|
prompt=CONDENSE_QUESTION_PROMPT |
|
) |
|
|
|
conversational_qa_chain = create_retrieval_chain( |
|
history_aware_retriever, |
|
combine_docs_chain |
|
) |
|
|
|
st.header("Ask Away!") |
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
store_chat_history(message["role"], message["content"]) |
|
|
|
prompts2 = st.chat_input("Say something") |
|
|
|
if prompts2: |
|
st.session_state.messages.append({"role": "user", "content": prompts2}) |
|
with st.chat_message("user"): |
|
st.write(prompts2) |
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking..."): |
|
for _ in range(3): |
|
try: |
|
response = conversational_qa_chain.invoke( |
|
{ |
|
"input": prompts2, |
|
"chat_history": chistory, |
|
} |
|
) |
|
st.write(response["answer"]) |
|
message = {"role": "assistant", "content": response["answer"]} |
|
st.session_state.messages.append(message) |
|
break |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
time.sleep(2) |
|
|
|
if __name__ == '__main__': |
|
app() |
|
|