lukecq's picture
Update app.py
9d1731e verified
raw
history blame
5.49 kB
import gradio as gr
import time
import transformers
from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor
from io import BytesIO
from urllib.request import urlopen
import librosa
import os, json
from sys import argv
from vllm import LLM, SamplingParams
import vllm
from huggingface_hub import login
TOKEN = os.environ.get("TOKEN", None)
login(token=TOKEN)
print("transformers version:", transformers.__version__)
print("vllm version:", vllm.__version__)
print("gradio version:", gr.__version__)
def load_model_processor(model_path):
processor = AutoProcessor.from_pretrained(model_path)
llm = LLM(
model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
enforce_eager=True, device = "cuda",
limit_mm_per_prompt={"audio": 5},
)
return llm, processor
model_path1 = "SeaLLMs/SeaLLMs-Audio-7B"
model1, processor1 = load_model_processor(model_path1)
def response_to_audio(audio_url, text, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
if text == None:
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": audio_url},
]},]
elif audio_url == None:
conversation = [
{"role": "user", "content": [
{"type": "text", "text": text},
]},]
else:
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": audio_url},
{"type": "text", "text": text},
]},]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
if ele['audio_url'] != None:
audios.append(librosa.load(
ele['audio_url'],
sr=processor.feature_extractor.sampling_rate)[0]
)
sampling_params = SamplingParams(
temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
stop_token_ids=[],
)
input = {
'prompt': text,
'multi_modal_data': {
'audio': [(audio, 16000) for audio in audios]
}
}
output = model.generate([input], sampling_params=sampling_params)[0]
response = output.outputs[0].text
return response
def clear_inputs():
return None, "", ""
def compare_responses(audio_url, text):
response1 = response_to_audio(audio_url, text, model1, processor1)
return response1
with gr.Blocks() as demo:
# gr.Markdown(f"Evaluate {model_path1}")
# gr.Markdown("""<p align="center"><img src="images/seal_logo.png" style="height: 80px"/><p>""")
# gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False)
# gr.Markdown("""<center><font size=8>SeaLLMs-Audio Demo</center>""")
gr.Markdown("""# SeaLLMs-Audio Demo""")
gr.Markdown(
"""\
<center><font size=4>This WebUI is based on SeaLLMs-Audio-7B-Chat, developed by Alibaba DAMO Academy.<br>
You can interact with the chatbot in <b>English, Chinese, Indonesian, Thai, or Vietnamese</b>.<br>
For the input, you can input <b>audio and/or text</center>.""")
# Links with proper formatting
gr.Markdown(
"""<center><font size=4>
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Website]</a> &nbsp;
<a href="https://huggingface.co/SeaLLMs/SeaLLMs-v3-7B-Chat">[Model🤗]</a> &nbsp;
<a href="https://github.com/liuchaoqun/SeaLLMs-Audio">[Github]</a>
</center>""",
)
# gr.Markdown(insturctions)
# with gr.Row():
# with gr.Column():
# temperature = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="Temperature")
# with gr.Column():
# top_p = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label="Top P")
# with gr.Column():
# repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1.1, step=0.1, label="Repetition Penalty")
with gr.Row():
with gr.Column():
# mic_input = gr.Microphone(label="Record Audio", type="filepath", elem_id="mic_input")
mic_input = gr.Audio(sources = ['upload', 'microphone'], label="Record Audio", type="filepath", elem_id="mic_input")
with gr.Column():
additional_input = gr.Textbox(label="Text Input")
# Button to trigger the function
with gr.Row():
btn_submit = gr.Button("Submit")
btn_clear = gr.Button("Clear")
with gr.Row():
output_text1 = gr.Textbox(label=model_path1.split('/')[-1], interactive=False, elem_id="output_text1")
btn_submit.click(
fn=compare_responses,
inputs=[mic_input, additional_input],
outputs=[output_text1],
)
btn_clear.click(
fn=clear_inputs,
inputs=None,
outputs=[mic_input, additional_input, output_text1],
queue=False,
)
# demo.launch(
# share=False,
# inbrowser=True,
# server_port=7950,
# server_name="0.0.0.0",
# max_threads=40
# )
demo.launch(share=True)
demo.queue(default_concurrency_limit=40).launch(share=True)