Spaces:
Runtime error
Runtime error
File size: 12,092 Bytes
20d8deb 2ca8cbe 2775945 afa19d2 9dabd6c c1110cc 9dabd6c 2775945 280969e 2775945 9dabd6c c1110cc 2775945 c1110cc 2775945 1550286 2775945 280969e 2775945 bdbfa0d 44fa624 2775945 c1110cc afa19d2 2775945 afa19d2 20d8deb 2775945 1550286 783415a 2775945 783415a 2775945 783415a 267f933 afa19d2 c1110cc afa19d2 e9f794c b90c977 e9f794c afa19d2 e9f794c afa19d2 566ce7a 36d5717 267f933 afa19d2 267f933 afa19d2 2775945 afa19d2 9dabd6c afa19d2 f51d548 4246bf0 96ce51a 76afae5 f51d548 2775945 afa19d2 280969e a752f91 afa19d2 267f933 afa19d2 ca842ee f51d548 afa19d2 e9f794c afa19d2 267f933 f51d548 2775945 240dc2e f51d548 2775945 f51d548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import gradio as gr
import pandas as pd
import hopsworks
from datetime import datetime
import requests
import json
import math
import os
hopsworks_today_path = "Resources/today_timetable_prediction/today_timetable_prediction.csv"
hopsworks_tomorrow_path = "Resources/tomorrow_timetable_prediction/tomorrow_timetable_prediction.csv"
def one_day_forward(year, month, day):
'''
Return "year", "month" and "day" numbers of the day after the inserted day
It works for all the possible years from 1592
'''
if month == 12:
if day == 31:
day = 1
month = 1
year = year + 1
else:
day = day + 1
elif month == 2:
if (day == 28):
if (year % 4 == 0):
day = 29
else:
day = 1
month = 3
elif (day == 29):
day = 1
month = 3
else:
day = day + 1
elif month == 4 or month == 6 or month == 9 or month == 11:
if (day == 30):
month = month + 1
day = 1
else:
day = day + 1
else:
day = day + 1
return year, month, day
def get_today_date():
'''
Return today's year, month and day numbers
'''
# Get today's date through TimeAPI
time_url = "https://worldtimeapi.org/api/timezone/Europe/Stockholm"
time_response = requests.get(time_url)
time_responseJson = time_response.json()
# Extract datetime
datetime_str = time_responseJson["datetime"]
datetime_object = datetime.fromisoformat(datetime_str[:-6]) # Remove the timezone offset for parsing
# Extract components from datetime
day = datetime_object.day
month = datetime_object.month
year = datetime_object.year
return year, month, day
def get_year_month_label(year, month, mode):
'''
Return the year_month in the format wanted by the different APIs file structure, by passing
the year, month and the mode. It pads with 0 when needed. The "mode" can be specified
between "hyphen", "underscore" and "empty" and it determines which divider you will find in
the year_month_label between the different input passed (e.g. 2024-01 or 20240105)
'''
year_month_label = ''
year_label = str(year)
month_label = ''
if month not in {10, 11, 12}:
month_label = '0' + str(month)
else:
month_label = str(month)
if mode == 'hyphen':
year_month_label = year_label + '-' + month_label
elif mode == 'underscore':
year_month_label = year_label + '_' + month_label
elif mode == 'empty':
year_month_label = year_label + month_label
return year_month_label
def get_date_label(year, month, day, mode):
'''
Return the date in the format wanted by the different APIs file structure, by passing
the year, month, day and the mode. It pads with 0 when needed. The "mode" can be specified
between "hyphen", "underscore" and "empty" and it determines which divider you will find in
the date_label between the different input passed (e.g. 2024-01-05 or 20240105)
'''
date_label = ''
year_month_label = get_year_month_label(year, month, mode)
day_label = ''
if day < 10:
day_label = '0' + str(day)
else:
day_label = str(day)
if mode == 'hyphen':
date_label = year_month_label + '-' + day_label
elif mode == 'underscore':
date_label = year_month_label + '_' + day_label
elif mode == 'empty':
date_label = year_month_label + day_label
return date_label
def get_name_of_cities():
yyyy, mm, dd = get_today_date()
yyyy1, mm1, dd1 = one_day_forward(yyyy, mm, dd)
date_label = get_date_label(yyyy, mm, dd, 'hyphen')
date_label1 = get_date_label(yyyy1, mm1, dd1, 'hyphen')
# Create the request_url, then get the subscription key from Swedavia API and set them in the header
swedavia_url = 'https://api.swedavia.se/flightinfo/v2/ARN/departures/' + date_label
swedavia_url1 = 'https://api.swedavia.se/flightinfo/v2/ARN/departures/' + date_label1
subscription_key = os.environ['SWEDAVIA_API_KEY']
headers = {
"Ocp-Apim-Subscription-Key": subscription_key,
"Accept": "application/json",
"Content-Type": 'application/json',
}
# Make the API request for Swedavia API
response = requests.get(swedavia_url, headers = headers)
response1 = requests.get(swedavia_url1, headers = headers)
flights_swedavia = response.json()
flights_swedavia1 = response1.json()
# Load JSON data into a Python dictionary
arrival_airports_info = [{
'ArrivalAirportIata': flight.get('flightLegIdentifier', {}).get('arrivalAirportIata'),
'ArrivalAirportEnglish': flight.get('arrivalAirportEnglish')}
for flight in flights_swedavia.get('flights', [])]
df = pd.DataFrame(arrival_airports_info)
arrival_airports_info1 = [{
'ArrivalAirportIata': flight.get('flightLegIdentifier', {}).get('arrivalAirportIata'),
'ArrivalAirportEnglish': flight.get('arrivalAirportEnglish')}
for flight in flights_swedavia1.get('flights', [])]
df1 = pd.DataFrame(arrival_airports_info1)
total_df = pd.DataFrame({'ArrivalAirportEnglish': pd.concat([df1['ArrivalAirportEnglish'], df['ArrivalAirportEnglish']]).drop_duplicates().reset_index(drop=True),'ArrivalAirportIata': pd.concat([df1['ArrivalAirportIata'], df['ArrivalAirportIata']]).drop_duplicates().reset_index(drop=True)})
total_df.sort_values('ArrivalAirportEnglish', inplace=True)
return total_df
def create_single_dataframe_from(dataframe):
df = get_name_of_cities()
df['ArrivalAirportIata'] = df['ArrivalAirportIata'].str.lower()
merged_df = pd.merge(df, dataframe, left_on='ArrivalAirportIata', right_on='airport', how='inner')
# Drop the duplicate 'ArrivalAirportIata' column
merged_df = merged_df.drop('ArrivalAirportIata', axis=1)
return merged_df
def get_dataframe(online_dataframe_path):
# Connect to Hopsworks File System
project = hopsworks.login(api_key_value = os.environ['HOPSWORKS_API_KEY'])
dataset_api = project.get_dataset_api()
# Download online dataframe and get path
dataframe_path = os.path.abspath(dataset_api.download(online_dataframe_path, overwrite = True))
# Read dataframe from local path, drop duplicates, return
dataframe = pd.read_csv(dataframe_path)
dataframe.drop_duplicates(inplace=True)
dataframe = create_single_dataframe_from(dataframe)
return dataframe
def get_tomorrow_dataframe():
return get_dataframe(hopsworks_today_path)
def get_today_dataframe():
return get_dataframe(hopsworks_tomorrow_path)
def get_metrics():
# Connect to Hopsworks File System
dataframe = hopsworks.login(api_key_value = os.environ['HOPSWORKS_API_KEY'])
dataframe = dataframe.get_feature_store()
dataframe = dataframe.get_feature_group(name = 'model_performance', version = 1)
dataframe = dataframe.read(dataframe_type = 'pandas')
dataframe = dataframe.sort_values('timestamp')
dataframe = dataframe[['timestamp', 'mae', 'dateset_size']].rename(columns={'dateset_size':'Dataset Size', 'mae':'Mean Absolute Error', 'timestamp':'Date'})
dataframe = dataframe.sort_values(['Date'], ascending = False)
return dataframe
selected_columns = ['destination', 'airport code', 'flight number', 'ontime', 'delayed']
ciccio, pasticcio = pd.DataFrame(), pd.DataFrame()
cities_datafram = get_name_of_cities()
ciccio = get_today_dataframe()
ciccio = ciccio.rename(columns={'airport':'airport code', 'ArrivalAirportEnglish':'destination', 'flight_number':'flight number'})
today_dataframe = ciccio[selected_columns]
pasticcio = get_tomorrow_dataframe()
pasticcio = pasticcio.rename(columns={'airport':'airport code','ArrivalAirportEnglish':'destination', 'flight_number':'flight number'})
tomorrow_dataframe = pasticcio[selected_columns]
performance_metric = get_metrics()
def get_possible_destinations():
global today_dataframe, tomorrow_dataframe
today_df, tomorrow_df = today_dataframe, tomorrow_dataframe
total_df = pd.DataFrame({'destination': pd.concat([today_df['destination'], tomorrow_df['destination']]).drop_duplicates().reset_index(drop=True).sort_values()})
total_dest = (total_df['destination']).tolist()
return total_dest
def get_dataframe_of(day):
global cities_datafram, today_dataframe, tomorrow_dataframe
today_df, tomorrow_df = pd.DataFrame(), pd.DataFrame()
today_df, tomorrow_df = today_dataframe, tomorrow_dataframe
if (day.lower() == 'today'):
return today_df
elif (day.lower() == 'tomorrow'):
return tomorrow_df
def get_specific_flights(day, max_delay, departure_hour, ampm, weather, destinations, yes):
df = get_dataframe_of(day)
if ('Select all' in destinations):
destinations = get_possible_destinations()
# Remove unwanted destinations
destinations = [dest for dest in destinations if dest not in ["That's a reason why I travel alone...", "I prefer not to say", 'Select all']]
# Select only flight during the same departure hour
df['departure_hour'] = df['ontime'].str.split(':').str[0].astype(int)
df = df[df['departure_hour'] == departure_hour].drop(columns=['departure_hour'])
# Convert time columns to datetime objects
df['ontime'] = pd.to_datetime(df['ontime'], format='%H:%M')
df['delayed'] = pd.to_datetime(df['delayed'], format='%H:%M')
# Get flight with less delay than the given and from the destinations selected, of the right day
df['delay'] = (df['delayed'] - df['ontime']).dt.total_seconds() / 60
filtered_df = df.loc[(df['delay'] < max_delay) & (df['destination'].isin(destinations)), ['destination', 'flight number', 'ontime', 'delayed']]
# Convert the string to datetime, then the datetime column to HH:MM
filtered_df['ontime'] = pd.to_datetime(filtered_df['ontime'])
filtered_df['ontime'] = filtered_df['ontime'].dt.strftime('%H:%M')
filtered_df['delayed'] = pd.to_datetime(filtered_df['delayed'])
filtered_df['delayed'] = filtered_df['delayed'].dt.strftime('%H:%M')
return filtered_df
def full_day_departure(day):
dataframe = get_dataframe_of(day)
copy_df = dataframe.drop(columns=['airport code']).sort_values(['ontime'], ascending = False)
return copy_df
def get_performance():
global performance_metric
return performance_metric
'''
print(get_specific_flights('today', 100, 8, 'am', 'weather', ['Select all'], 'yes'))
print(full_day_departure('tomorrow'))
print(get_performance())
'''
specific_flights = gr.Interface(
get_specific_flights,
[
gr.Radio(["today", "tomorrow"], type="value", label="Day", info="When do you have the plane?"),
gr.Slider(0, 50, value=20, label="Possible Delay", info="How unfortunate do you wanna be?"),
gr.Number(precision=0, minimum=0, maximum=23, label="Departure Time"),
gr.Radio(["am", "pm"], type="index", info="It's the same, no worries!", label = "Am or Pm?"),
gr.CheckboxGroup(["Yes, it's cloudy", "I am not in Stockholm"], label="Weather", info="Is it a typical Stockholm day?"),
gr.Dropdown(get_possible_destinations() + ["That's a reason why I travel alone...", "I prefer not to say", "Select all"],
type = "value", multiselect=True, label="Destination", value=["That's a reason why I travel alone..."],
info="Are you just curious or you are actually going somewhere? Where? With who?"),
gr.Radio(["Yes", "Yes", "Yes"], type="index", label="Let's guess?", info="We know that you'll say yes!"),
],
"dataframe",
)
total_departure = gr.Interface(
full_day_departure,
[
gr.Radio(["Today", "Tomorrow"], type="value", label="Departure", info="When are you departing?"),
],
"dataframe",
)
metrics = gr.Interface(fn = get_performance, inputs=None, outputs='dataframe', allow_flagging="never")
#flights.launch()
interface = gr.TabbedInterface([specific_flights, total_departure, metrics], {"Full Day Departure", "Specific Flights", "Model Performances"})
interface.launch() |