File size: 18,639 Bytes
ba8a2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# GPT-3 Paper 
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
import tiktoken
from torch.nn import functional as F


class CausalSelfAttention(nn.Module):

    def __init__(self, config):
        super().__init__()

        #assertion to ensure the embedding dimension is divisible by the number of heads (important for reshaping later).
        assert config.n_embd % config.n_head == 0

        # key, query, value projections for all heads, but in a batch. Each vector has the same dimension (C) as the input embedding.
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)

        
        # output projection find the meaning?
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANGPT_SCALE_INIT = 1



        # regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        # x is tokenised version of input.txt
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
        # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

        # att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        # att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))# find what is it???

        # att = F.softmax(att, dim=-1)
        # y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        


        ## This function combines the dot product, scaling, and softmax operations into a single step.
        y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention

        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
        # output projection
        y = self.c_proj(y)
        return y


class MLP(nn.Module):
# MLP (Multi-Layer Perceptron)
## This class implements a simple multi-layer perceptron (MLP) sub-module. 
## It's often used within transformers for non-linear transformations.

    def __init__(self, config):
        #sqeeze and expand
        super().__init__()
        #c_fc: Projects the input (x) to a dimension four times larger than the embedding dimension (n_embd).
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd)

        # GELU (Gaussian Error Linear Unit) activation function for non-linearity. 
        #Here, an approximate version using tanh is used.
        self.gelu    = nn.GELU(approximate='tanh')

        # Projects the output back to the original embedding dimension (n_embd).
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1

    def forward(self, x):

      #Takes the input (x).
      # Applies the linear layer (c_fc), followed by the GELU activation.
      # Applies the final projection layer (c_proj).
      # Returns the transformed output.
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x

class Block(nn.Module):
  # This class combines the CausalSelfAttention layer (explained previously) and the MLP layer to form a single transformer block. 
  # The input is processed through the attention layer, followed by layer normalization and an MLP, and 
  # then again with layer normalization.

    def __init__(self, config):
        super().__init__()
        
        #ln_1: A layer normalization layer applied before the causal self-attention.
        #attn: An instance of the CausalSelfAttention class (explained previously).
        #mlp: An instance of the MLP class (explained previously).
        
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
      # Takes the input (x).
      # Performs a residual connection with the output from the causal self-attention layer (attn), preceded by layer normalization (ln_1).
      # Performs another residual connection with the output from the MLP layer (mlp), preceded by layer normalization (ln_2).
      # Returns the final output after the second residual connection.
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


@dataclass
class GPTConfig:
    block_size: int = 1024 # max sequence length
    vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
    n_layer: int = 12 # number of layers
    n_head: int = 12 # number of heads
    n_embd: int = 768 # embedding dimension


class GPT(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config



        # Creates a transformer module dictionary containing several key components:
        #wte: Word token embedding layer (nn.Embedding). Maps each word index to its corresponding embedding vector.
        #wpe: Positional embedding layer (nn.Embedding). Adds positional information to the word embeddings.
        #h: A module list containing multiple Block instances (explained earlier). These are the core processing units of the transformer.
        #ln_f: Final layer normalization layer (nn.LayerNorm) applied to the output of the transformer blocks.

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))


        #Creates the language modeling head (lm_head), a linear layer that projects the final hidden state from the 
        #transformer to the vocabulary size, predicting the next word in the sequence.
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # weight sharing Implements weight sharing between the word token embedding layer (wte) 
        #and the language modeling head (lm_head). This reduces the number of parameters and encourages 
        #the model to learn a meaningful representation for words that can be used for both embedding and prediction.
        self.transformer.wte.weight = self.lm_head.weight

        # weight initialization
        #Initializes the weights of the model using a custom function (_init_weights).
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5
            torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)



    def forward(self, idx, targets=None):
        # idx is of shape (B, T)
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        # forward the token and posisition embeddings
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
        pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
        tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
        x = tok_emb + pos_emb
        # forward the blocks of the transformer
        for block in self.transformer.h:
            x = block(x)
        # forward the final layernorm and the classifier
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x) # (B, T, vocab_size)
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        return logits, loss

    @classmethod
    def from_pretrained(cls, model_type):
        """Loads pretrained GPT-2 model weights from huggingface"""
        assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
        from transformers import GPT2LMHeadModel
        print("loading weights from pretrained gpt: %s" % model_type)

        # n_layer, n_head and n_embd are determined from model_type
        config_args = {
            'gpt2':         dict(n_layer=12, n_head=12, n_embd=768),  # 124M params
            'gpt2-medium':  dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
            'gpt2-large':   dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
            'gpt2-xl':      dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
        }[model_type]
        config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
        config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
        # create a from-scratch initialized minGPT model
        config = GPTConfig(**config_args)
        model = GPT(config)
        sd = model.state_dict()
        sd_keys = sd.keys()
        sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param

        # init a huggingface/transformers model
        model_hf = GPT2LMHeadModel.from_pretrained(model_type)
        sd_hf = model_hf.state_dict()

        # copy while ensuring all of the parameters are aligned and match in names and shapes
        sd_keys_hf = sd_hf.keys()
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
        transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
        # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
        # this means that we have to transpose these weights when we import them
        assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
        for k in sd_keys_hf:
            if any(k.endswith(w) for w in transposed):
                # special treatment for the Conv1D weights we need to transpose
                assert sd_hf[k].shape[::-1] == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k].t())
            else:
                # vanilla copy over the other parameters
                assert sd_hf[k].shape == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k])

        return model

    def configure_optimizers(self, weight_decay, learning_rate, device_type):
        # start with all of the candidate parameters (that require grad)
        param_dict = {pn: p for pn, p in self.named_parameters()}
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)
        
        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == "cuda"
        
        print(f"using fused AdamW: {use_fused}")
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
        return optimizer

# model = GPT.from_pretrained('gpt2')

device = 'cpu'
if torch.cuda.is_available():
    device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
    device = "mps"
print(f"using device: {device}")

# SEED
torch.manual_seed(1337)
if torch.cuda.is_available():
    torch.cuda.manual_seed(1337)

# STOP
# num_return_sequences = 5
# max_length = 30



import tiktoken

class DataLoaderLite:
    def __init__(self, B, T):
        self.B = B
        self.T = T

        # at init load tokens from disk and store them in memory
        with open('input.txt', 'r') as f:
            text = f.read()
        enc = tiktoken.get_encoding('gpt2') 
        tokens = enc.encode(text)
        self.tokens = torch.tensor(tokens)
        print(f'loaded {len(self.tokens)} tokens')
        print(f'1 epoch = {len(self.tokens) // (B * T)} batches')

        # state
        self.current_position = 0
    
    def next_batch(self):
        B, T = self.B, self.T
        buf = self.tokens[self.current_position: self.current_position + B * T + 1]
        x = (buf[:-1]).view(B, T) # inputs
        y = (buf[1:]).view(B, T) # targets
        # advance the position in the tensor
        self.current_position += B*T
        # if loading the next batch would be out of bounds, reset
        if self.current_position + (B * T + 1) > len(self.tokens):
            self.current_position = 0
        return x, y

# CHANGES IN CURRENT CODE
torch.set_float32_matmul_precision('high')
model = GPT(GPTConfig())
model.to(device)
# model = torch.compile(model)

# CODE UPDATE HERE
max_lr = 6e-4 
min_lr = max_lr * 0.1
# warmup_steps = 100
# # max_steps = 50

def get_lr(it,warmup_steps, max_steps):
    if it < warmup_steps:
        return max_lr * (it + 1) / warmup_steps
    if it > max_steps:
        return min_lr
    decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
    assert 0 <= decay_ratio <=1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return min_lr + coeff * (max_lr - min_lr)


# NEW CODE
import time
train_loader = DataLoaderLite(B = 8, T = 512)

# train_loader = DataLoaderLite(B = B, T = T)
x, y = train_loader.next_batch()
x.shape, y.shape

def run_train (max_steps = 50 ,warmup_steps = 100, PATH = "/content/drive/MyDrive/S21/gpt_124M.pth" ):
  # optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8)
  optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
  for step in range(max_steps):
      t0 = time.time()
      x, y = train_loader.next_batch()
      x, y = x.to(device), y.to(device)
      optimizer.zero_grad()
      # NEW CODE ADDED HERE
      with torch.autocast(device_type=device, dtype=torch.bfloat16):
          logits, loss = model(x, y) 
      loss.backward()
      norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
      # NEW CODE
      lr = get_lr(step, max_steps = 50 ,warmup_steps = 100)
      for param_group in optimizer.param_groups:
          param_group['lr'] = lr
          
      optimizer.step()
      torch.cuda.synchronize() 
      t1 = time.time()
      dt = (t1 - t0) * 1000
      tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
      print(f'step{step} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}')
  print(loss)
  torch.save(model.state_dict(), PATH)
  return model

def load_fromsaved(PATH = "/content/drive/MyDrive/S21/gpt_124M.pth" ):

  # Create a new GPT model instance
  model = GPT(GPTConfig())
  model.to(device)

  # Load the saved weights into the model
  model.load_state_dict(torch.load(PATH))
  

  # Print confirmation message
  print("Loaded model weights from:", PATH)
  model.to(device)

  return model 


def gen_text(model,start_tokens, max_length=100, num_return_sequences=10 ):
  """
  Generates text using the loaded GPT model.

  Args:
      model: The GPT model to use for generation.
      start_tokens (optional): A list of token IDs to use as the starting prompt.
      max_length: The maximum length of the generated text.
      num_return_sequences: The number of text sequences to generate.

  Returns:
      None
  """
  decoded_texts = ''
  enc = tiktoken.get_encoding('gpt2') 
  tokens = enc.encode(start_tokens)
  tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app
  tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
  x = tokens.to(device)

  # Set random seeds for consistent generation across runs
  torch.manual_seed(42)
  torch.cuda.manual_seed(42)
  generated_text = ""
  while x.size(1) < max_length:
        # forward the model to get the logits
        with torch.no_grad():
            logits = model(x)[0] # (B, T, vocab_size)
            # take the logits at the last position
            logits = logits[:, -1, :] # (B, vocab_size)
            # get the probabilities
            probs = F.softmax(logits, dim=-1)
            # do top-k sampling of 50 (huggingface pipeline default)
            # topk_probs here becomes (5, 50), topk_indices is (5, 50)
            topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
            # select a token from the top-k probabilities
            # note: multinomial does not demand the input to sum to 1
            ix = torch.multinomial(topk_probs, 1) # (B, 1)
            # gather the corresponding indices
            xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
            # append to the sequence
            x = torch.cat((x, xcol), dim=1)

  # print the generated text
  for i in range(num_return_sequences):
        tokens = x[i, :max_length].tolist()
        decoded = enc.decode(tokens)
        print(">", decoded)
        generated_text += decoded
  return generated_text