Spaces:
Paused
Paused
File size: 18,639 Bytes
ba8a2e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
# GPT-3 Paper
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
import tiktoken
from torch.nn import functional as F
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
#assertion to ensure the embedding dimension is divisible by the number of heads (important for reshaping later).
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch. Each vector has the same dimension (C) as the input embedding.
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection find the meaning?
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
# x is tokenised version of input.txt
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))# find what is it???
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
## This function combines the dot product, scaling, and softmax operations into a single step.
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
# MLP (Multi-Layer Perceptron)
## This class implements a simple multi-layer perceptron (MLP) sub-module.
## It's often used within transformers for non-linear transformations.
def __init__(self, config):
#sqeeze and expand
super().__init__()
#c_fc: Projects the input (x) to a dimension four times larger than the embedding dimension (n_embd).
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
# GELU (Gaussian Error Linear Unit) activation function for non-linearity.
#Here, an approximate version using tanh is used.
self.gelu = nn.GELU(approximate='tanh')
# Projects the output back to the original embedding dimension (n_embd).
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
#Takes the input (x).
# Applies the linear layer (c_fc), followed by the GELU activation.
# Applies the final projection layer (c_proj).
# Returns the transformed output.
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
# This class combines the CausalSelfAttention layer (explained previously) and the MLP layer to form a single transformer block.
# The input is processed through the attention layer, followed by layer normalization and an MLP, and
# then again with layer normalization.
def __init__(self, config):
super().__init__()
#ln_1: A layer normalization layer applied before the causal self-attention.
#attn: An instance of the CausalSelfAttention class (explained previously).
#mlp: An instance of the MLP class (explained previously).
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
# Takes the input (x).
# Performs a residual connection with the output from the causal self-attention layer (attn), preceded by layer normalization (ln_1).
# Performs another residual connection with the output from the MLP layer (mlp), preceded by layer normalization (ln_2).
# Returns the final output after the second residual connection.
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024 # max sequence length
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
n_layer: int = 12 # number of layers
n_head: int = 12 # number of heads
n_embd: int = 768 # embedding dimension
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Creates a transformer module dictionary containing several key components:
#wte: Word token embedding layer (nn.Embedding). Maps each word index to its corresponding embedding vector.
#wpe: Positional embedding layer (nn.Embedding). Adds positional information to the word embeddings.
#h: A module list containing multiple Block instances (explained earlier). These are the core processing units of the transformer.
#ln_f: Final layer normalization layer (nn.LayerNorm) applied to the output of the transformer blocks.
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
#Creates the language modeling head (lm_head), a linear layer that projects the final hidden state from the
#transformer to the vocabulary size, predicting the next word in the sequence.
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing Implements weight sharing between the word token embedding layer (wte)
#and the language modeling head (lm_head). This reduces the number of parameters and encourages
#the model to learn a meaningful representation for words that can be used for both embedding and prediction.
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
#Initializes the weights of the model using a custom function (_init_weights).
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
def forward(self, idx, targets=None):
# idx is of shape (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and posisition embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
x = tok_emb + pos_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
# model = GPT.from_pretrained('gpt2')
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
# SEED
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
# STOP
# num_return_sequences = 5
# max_length = 30
import tiktoken
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
# at init load tokens from disk and store them in memory
with open('input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded {len(self.tokens)} tokens')
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
# state
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
x = (buf[:-1]).view(B, T) # inputs
y = (buf[1:]).view(B, T) # targets
# advance the position in the tensor
self.current_position += B*T
# if loading the next batch would be out of bounds, reset
if self.current_position + (B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
# CHANGES IN CURRENT CODE
torch.set_float32_matmul_precision('high')
model = GPT(GPTConfig())
model.to(device)
# model = torch.compile(model)
# CODE UPDATE HERE
max_lr = 6e-4
min_lr = max_lr * 0.1
# warmup_steps = 100
# # max_steps = 50
def get_lr(it,warmup_steps, max_steps):
if it < warmup_steps:
return max_lr * (it + 1) / warmup_steps
if it > max_steps:
return min_lr
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <=1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (max_lr - min_lr)
# NEW CODE
import time
train_loader = DataLoaderLite(B = 8, T = 512)
# train_loader = DataLoaderLite(B = B, T = T)
x, y = train_loader.next_batch()
x.shape, y.shape
def run_train (max_steps = 50 ,warmup_steps = 100, PATH = "/content/drive/MyDrive/S21/gpt_124M.pth" ):
# optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8)
optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
for step in range(max_steps):
t0 = time.time()
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
# NEW CODE ADDED HERE
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss.backward()
norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
# NEW CODE
lr = get_lr(step, max_steps = 50 ,warmup_steps = 100)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
torch.cuda.synchronize()
t1 = time.time()
dt = (t1 - t0) * 1000
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
print(f'step{step} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}')
print(loss)
torch.save(model.state_dict(), PATH)
return model
def load_fromsaved(PATH = "/content/drive/MyDrive/S21/gpt_124M.pth" ):
# Create a new GPT model instance
model = GPT(GPTConfig())
model.to(device)
# Load the saved weights into the model
model.load_state_dict(torch.load(PATH))
# Print confirmation message
print("Loaded model weights from:", PATH)
model.to(device)
return model
def gen_text(model,start_tokens, max_length=100, num_return_sequences=10 ):
"""
Generates text using the loaded GPT model.
Args:
model: The GPT model to use for generation.
start_tokens (optional): A list of token IDs to use as the starting prompt.
max_length: The maximum length of the generated text.
num_return_sequences: The number of text sequences to generate.
Returns:
None
"""
decoded_texts = ''
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(start_tokens)
tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
x = tokens.to(device)
# Set random seeds for consistent generation across runs
torch.manual_seed(42)
torch.cuda.manual_seed(42)
generated_text = ""
while x.size(1) < max_length:
# forward the model to get the logits
with torch.no_grad():
logits = model(x)[0] # (B, T, vocab_size)
# take the logits at the last position
logits = logits[:, -1, :] # (B, vocab_size)
# get the probabilities
probs = F.softmax(logits, dim=-1)
# do top-k sampling of 50 (huggingface pipeline default)
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
# select a token from the top-k probabilities
# note: multinomial does not demand the input to sum to 1
ix = torch.multinomial(topk_probs, 1) # (B, 1)
# gather the corresponding indices
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
# append to the sequence
x = torch.cat((x, xcol), dim=1)
# print the generated text
for i in range(num_return_sequences):
tokens = x[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(">", decoded)
generated_text += decoded
return generated_text |