File size: 5,764 Bytes
979d590
8eadd5d
c2b2b3c
5b50796
 
45cfc26
979d590
 
4fbf7fa
 
 
45cfc26
 
 
 
 
979d590
45cfc26
979d590
d8d4f16
e58377a
45cfc26
979d590
 
45cfc26
979d590
fe9d707
45cfc26
979d590
 
45cfc26
979d590
 
 
45cfc26
979d590
45cfc26
 
 
979d590
45cfc26
 
979d590
45cfc26
 
 
 
 
979d590
 
45cfc26
 
 
979d590
1ebd803
45cfc26
 
 
 
 
 
 
 
 
 
979d590
45cfc26
 
979d590
45cfc26
 
979d590
45cfc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ebd803
12add53
 
45cfc26
 
 
12add53
c4d75ea
45cfc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import warnings
import os
import random
import gradio as gr
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
)

# Suppress warnings and fix Gradio schema bug
warnings.filterwarnings('ignore', category=FutureWarning)
nltk.download('vader_lexicon', quiet=True)

# --- Emotion Analyzer ---
class EmotionalAnalyzer:
    def __init__(self):
        self.model = AutoModelForSequenceClassification.from_pretrained(
            "bhadresh-savani/distilbert-base-uncased-emotion"
        )
        self.tokenizer = AutoTokenizer.from_pretrained(
            "bhadresh-savani/distilbert-base-uncased-emotion"
        )
        self.labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
        self.sia = SentimentIntensityAnalyzer()

    def predict_emotion(self, text):
        inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
        with torch.no_grad():
            outputs = self.model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
        return self.labels[torch.argmax(probs).item()]

    def analyze(self, text):
        vader_scores = self.sia.polarity_scores(text)
        blob = TextBlob(text)
        blob_data = {
            "polarity": blob.sentiment.polarity,
            "subjectivity": blob.sentiment.subjectivity,
            "word_count": len(blob.words),
            "sentence_count": len(blob.sentences),
        }
        return {
            "emotion": self.predict_emotion(text),
            "vader": vader_scores,
            "textblob": blob_data,
        }

    def plot_emotions(self):
        simulated_emotions = {
            "joy": random.randint(10, 30),
            "sadness": random.randint(5, 20),
            "anger": random.randint(10, 25),
            "fear": random.randint(5, 15),
            "love": random.randint(10, 30),
            "surprise": random.randint(5, 20),
        }
        df = pd.DataFrame(list(simulated_emotions.items()), columns=["Emotion", "Percentage"])
        plt.figure(figsize=(8, 4))
        sns.barplot(x="Emotion", y="Percentage", data=df)
        plt.title("Simulated Emotional State")
        plt.tight_layout()
        path = "emotions.png"
        plt.savefig(path)
        plt.close()
        return path

# --- Text Completion LLM ---
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")

def generate_completion(message, temperature, max_length):
    inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
    input_ids = inputs["input_ids"]
    current_text = message

    for _ in range(max_length - input_ids.shape[1]):
        with torch.no_grad():
            outputs = model(input_ids)
            logits = outputs.logits[:, -1, :] / temperature
            probs = torch.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)

        if next_token.item() == tokenizer.eos_token_id:
            break

        input_ids = torch.cat([input_ids, next_token], dim=-1)
        new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
        current_text += new_token_text
        yield current_text

# --- Emotion-Aware LLM Response ---
def emotion_aware_response(input_text):
    analyzer = EmotionalAnalyzer()
    results = analyzer.analyze(input_text)
    image_path = analyzer.plot_emotions()

    prompt = (
        f"Input: {input_text}\n"
        f"Detected Emotion: {results['emotion']}\n"
        f"VADER Scores: {results['vader']}\n"
        f"Respond thoughtfully and emotionally aware:"
    )

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        output_ids = model.generate(
            inputs.input_ids,
            max_length=512,
            do_sample=True,
            temperature=0.7,
            top_k=50,
            top_p=0.95,
            pad_token_id=tokenizer.eos_token_id
        )
    response = tokenizer.decode(output_ids[0], skip_special_tokens=True)

    summary = (
        f"Emotion: {results['emotion']}\n"
        f"VADER: {results['vader']}\n"
        f"TextBlob: {results['textblob']}\n\n"
        f"LLM Response:\n{response}"
    )
    return summary, image_path

# --- Gradio Interface ---
with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
    gr.Markdown("## 🧠 ELN-LLaMA Emotion-Aware & Completion Interface")
    
    with gr.Tab("💬 Emotion-Aware Response"):
        with gr.Row():
            input_text = gr.Textbox(label="Input Text", lines=4, placeholder="Type something with emotion or meaning...")
        with gr.Row():
            text_output = gr.Textbox(label="Response", lines=8)
            img_output = gr.Image(label="Emotional Visualization")
        emotion_btn = gr.Button("Generate Emotion-Aware Response")
        emotion_btn.click(emotion_aware_response, inputs=input_text, outputs=[text_output, img_output])

    with gr.Tab("📝 Text Completion"):
        comp_text = gr.Textbox(label="Prompt", lines=4)
        comp_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
        comp_len = gr.Slider(minimum=50, maximum=500, value=200, step=50, label="Max Length")
        comp_output = gr.Textbox(label="Generated Completion", lines=8)
        comp_button = gr.Button("Complete Text")
        comp_button.click(generate_completion, inputs=[comp_text, comp_temp, comp_len], outputs=comp_output)

app.launch(share=True)