Spaces:
Running
Running
File size: 5,764 Bytes
979d590 8eadd5d c2b2b3c 5b50796 45cfc26 979d590 4fbf7fa 45cfc26 979d590 45cfc26 979d590 d8d4f16 e58377a 45cfc26 979d590 45cfc26 979d590 fe9d707 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 1ebd803 45cfc26 979d590 45cfc26 979d590 45cfc26 979d590 45cfc26 1ebd803 12add53 45cfc26 12add53 c4d75ea 45cfc26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import warnings
import os
import random
import gradio as gr
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSequenceClassification,
)
# Suppress warnings and fix Gradio schema bug
warnings.filterwarnings('ignore', category=FutureWarning)
nltk.download('vader_lexicon', quiet=True)
# --- Emotion Analyzer ---
class EmotionalAnalyzer:
def __init__(self):
self.model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion"
)
self.tokenizer = AutoTokenizer.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion"
)
self.labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
self.sia = SentimentIntensityAnalyzer()
def predict_emotion(self, text):
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = self.model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
return self.labels[torch.argmax(probs).item()]
def analyze(self, text):
vader_scores = self.sia.polarity_scores(text)
blob = TextBlob(text)
blob_data = {
"polarity": blob.sentiment.polarity,
"subjectivity": blob.sentiment.subjectivity,
"word_count": len(blob.words),
"sentence_count": len(blob.sentences),
}
return {
"emotion": self.predict_emotion(text),
"vader": vader_scores,
"textblob": blob_data,
}
def plot_emotions(self):
simulated_emotions = {
"joy": random.randint(10, 30),
"sadness": random.randint(5, 20),
"anger": random.randint(10, 25),
"fear": random.randint(5, 15),
"love": random.randint(10, 30),
"surprise": random.randint(5, 20),
}
df = pd.DataFrame(list(simulated_emotions.items()), columns=["Emotion", "Percentage"])
plt.figure(figsize=(8, 4))
sns.barplot(x="Emotion", y="Percentage", data=df)
plt.title("Simulated Emotional State")
plt.tight_layout()
path = "emotions.png"
plt.savefig(path)
plt.close()
return path
# --- Text Completion LLM ---
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")
def generate_completion(message, temperature, max_length):
inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
input_ids = inputs["input_ids"]
current_text = message
for _ in range(max_length - input_ids.shape[1]):
with torch.no_grad():
outputs = model(input_ids)
logits = outputs.logits[:, -1, :] / temperature
probs = torch.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
if next_token.item() == tokenizer.eos_token_id:
break
input_ids = torch.cat([input_ids, next_token], dim=-1)
new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
current_text += new_token_text
yield current_text
# --- Emotion-Aware LLM Response ---
def emotion_aware_response(input_text):
analyzer = EmotionalAnalyzer()
results = analyzer.analyze(input_text)
image_path = analyzer.plot_emotions()
prompt = (
f"Input: {input_text}\n"
f"Detected Emotion: {results['emotion']}\n"
f"VADER Scores: {results['vader']}\n"
f"Respond thoughtfully and emotionally aware:"
)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
output_ids = model.generate(
inputs.input_ids,
max_length=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
summary = (
f"Emotion: {results['emotion']}\n"
f"VADER: {results['vader']}\n"
f"TextBlob: {results['textblob']}\n\n"
f"LLM Response:\n{response}"
)
return summary, image_path
# --- Gradio Interface ---
with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
gr.Markdown("## 🧠 ELN-LLaMA Emotion-Aware & Completion Interface")
with gr.Tab("💬 Emotion-Aware Response"):
with gr.Row():
input_text = gr.Textbox(label="Input Text", lines=4, placeholder="Type something with emotion or meaning...")
with gr.Row():
text_output = gr.Textbox(label="Response", lines=8)
img_output = gr.Image(label="Emotional Visualization")
emotion_btn = gr.Button("Generate Emotion-Aware Response")
emotion_btn.click(emotion_aware_response, inputs=input_text, outputs=[text_output, img_output])
with gr.Tab("📝 Text Completion"):
comp_text = gr.Textbox(label="Prompt", lines=4)
comp_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
comp_len = gr.Slider(minimum=50, maximum=500, value=200, step=50, label="Max Length")
comp_output = gr.Textbox(label="Generated Completion", lines=8)
comp_button = gr.Button("Complete Text")
comp_button.click(generate_completion, inputs=[comp_text, comp_temp, comp_len], outputs=comp_output)
app.launch(share=True)
|