Spaces:
Running
Running
File size: 11,381 Bytes
a403423 4b172ec a403423 1d99f89 a403423 ef464fc 4b172ec a403423 4b172ec a403423 4b172ec a403423 4b172ec a403423 4b172ec a403423 4b172ec a403423 4b172ec a403423 4b172ec a403423 4b172ec a403423 1d99f89 ef464fc a403423 1d99f89 a403423 1d99f89 a403423 1d99f89 a403423 1d99f89 a403423 ef464fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
from sklearn.ensemble import IsolationForest
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.neural_network import MLPClassifier
from deap import base, creator, tools, algorithms
from transformers import BloomForCausalLM, BloomTokenizerFast
import torch
import torch.multiprocessing as mp
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding
encoder = OneHotEncoder(handle_unknown='ignore')
contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
# Encoding emotions
emotions_target = df['emotion'].astype('category').cat.codes
emotion_classes = df['emotion'].astype('category').cat.categories
# Train Neural Network
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
model = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, random_state=42)
model.fit(X_train, y_train)
# Isolation Forest Anomaly Detection Model
historical_data = np.array([model.predict(contexts_encoded)]).T
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
isolation_forest.fit(historical_data)
# Emotional States with 20 emotions
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive'},
'pleasure': {'percentage': 10, 'motivation': 'selfish'},
'sadness': {'percentage': 10, 'motivation': 'negative'},
'grief': {'percentage': 10, 'motivation': 'negative'},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
'calmness': {'percentage': 10, 'motivation': 'neutral'},
'determination': {'percentage': 10, 'motivation': 'positive'},
'resentment': {'percentage': 10, 'motivation': 'negative'},
'glory': {'percentage': 10, 'motivation': 'positive'},
'motivation': {'percentage': 10, 'motivation': 'positive'},
'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
'fear': {'percentage': 10, 'motivation': 'defensive'},
'surprise': {'percentage': 10, 'motivation': 'unexpected'},
'anticipation': {'percentage': 10, 'motivation': 'predictive'},
'trust': {'percentage': 10, 'motivation': 'reliable'},
'disgust': {'percentage': 10, 'motivation': 'repulsive'},
'optimism': {'percentage': 10, 'motivation': 'hopeful'},
'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
'boredom': {'percentage': 10, 'motivation': 'indifferent'},
'envy': {'percentage': 10, 'motivation': 'jealous'}
}
# Adjust all emotions to a total of 200%
total_percentage = 200
default_percentage = total_percentage / len(emotions)
for emotion in emotions:
emotions[emotion]['percentage'] = default_percentage
emotion_history_file = 'emotion_history.json'
# Load historical data from file if exists
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
# Save historical data to file
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
# Load previous emotional states
emotion_history = load_historical_data()
# Function to update emotions
def update_emotion(emotion, percentage):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
# Ensure total percentage remains 200%
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
# Function to normalize context
def normalize_context(context):
return context.lower().strip()
# Function to evolve emotions using genetic algorithm
def evolve_emotions():
# Define the fitness function
def evaluate(individual):
ideal_state = individual[-1] # Last value is the ideal state percentage
other_emotions = individual[:-1] # All other emotions
return abs(ideal_state - 100), sum(other_emotions)
# Register the genetic algorithm components
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMin)
# Create individuals and population
toolbox = base.Toolbox()
toolbox.register("attribute", lambda: random.uniform(0, 20))
toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
toolbox.register("ideal_state", lambda: random.uniform(80, 120))
toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)
# Register genetic operators
toolbox.register("evaluate", evaluate)
toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=10, sigma=5, indpb=0.3)
toolbox.register("select", tools.selTournament, tournsize=3)
# Initialize the population
population = toolbox.population(n=10)
# Run genetic algorithm
population, log = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=20, verbose=False)
# Update the emotions with the best individual
best_individual = tools.selBest(population, k=1)[0]
for idx, emotion in enumerate(emotions.keys()):
emotions[emotion]['percentage'] = best_individual[idx]
# Function to get emotional response
def get_emotional_response(context):
# Normalize context
context = normalize_context(context)
# Encode the context and predict the emotion using the neural network
context_encoded = encoder.transform([[context]]).toarray()
prediction = model.predict(context_encoded)
predicted_emotion = emotion_classes[prediction[0]]
# Check for anomalies using Isolation Forest
anomaly_score = isolation_forest.decision_function([prediction])[0]
if anomaly_score < -0.5:
print("Anomalous context detected. Adjusting emotional response.")
update_emotion('calmness', 20)
else:
# Define emotional responses
if predicted_emotion == 'joy':
update_emotion('joy', 20)
update_emotion('pleasure', 20)
elif predicted_emotion == 'sadness':
update_emotion('sadness', 20)
update_emotion('grief', 20)
elif predicted_emotion == 'anger':
update_emotion('anger', 20)
elif predicted_emotion == 'determination':
update_emotion('determination', 20)
elif predicted_emotion == 'resentment':
update_emotion('resentment', 20)
elif predicted_emotion == 'glory':
update_emotion('glory', 20)
elif predicted_emotion == 'motivation':
update_emotion('motivation', 20)
elif predicted_emotion == 'surprise':
update_emotion('surprise', 20)
elif predicted_emotion == 'fear':
update_emotion('fear', 20)
elif predicted_emotion == 'trust':
update_emotion('trust', 20)
elif predicted_emotion == 'disgust':
update_emotion('disgust', 20)
elif predicted_emotion == 'optimism':
update_emotion('optimism', 20)
elif predicted_emotion == 'pessimism':
update_emotion('pessimism', 20)
elif predicted_emotion == 'boredom':
update_emotion('boredom', 20)
elif predicted_emotion == 'envy':
update_emotion('envy', 20)
else:
update_emotion('calmness', 20)
# Record the current emotional state in history
emotion_state = {emotion: data['percentage'] for emotion, data in emotions.items()}
emotion_history.append(emotion_state)
# Save the history to file
save_historical_data(emotion_history)
# Print the current emotional state
response = ""
for emotion, data in emotions.items():
response += f"{emotion.capitalize()}: {data['percentage']:.2f}% ({data['motivation']} motivation)\n"
return response
# Function to handle idle state using genetic algorithm
def handle_idle_state():
evolve_emotions()
response = "Emotions evolved\n"
for emotion, data in emotions.items():
response += f"{emotion.capitalize()}: {data['percentage']:.2f}% ({data['motivation']} motivation)\n"
return response
# S.O.U.L. (Self-Organizing Universal Learning) Function
class SOUL:
def __init__(self, model_name='bigscience/bloom-1b1'):
self.tokenizer = BloomTokenizerFast.from_pretrained(model_name)
self.model = BloomForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def generate_text(self, prompt, max_length=100):
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
# Generate
with torch.no_grad():
generate_ids = self.model.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
return self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
def bridge_ai(self, prompt):
# Generate the response using BLOOM
bloom_response = self.generate_text(prompt)
# Get the emotional response
emotional_response = get_emotional_response(bloom_response)
return bloom_response, emotional_response
# Example usage of S.O.U.L. function
soul = SOUL()
def interact_with_soul(user_input):
bloom_response, emotional_response = soul.bridge_ai(user_input)
return bloom_response, emotional_response
# Function to handle Gradio interface using multiprocessing
def launch_gradio():
iface = gr.Interface(
fn=interact_with_soul,
inputs="text",
outputs=["text", "text"],
title="S.O.U.L AI",
description="Enter a prompt to interact with the S.O.U.L AI, which will generate a response and provide an emotional analysis."
)
iface.launch()
# Use multiprocessing to utilize all CPU cores
if __name__ == '__main__':
mp.set_start_method('spawn')
p = mp.Process(target=launch_gradio)
p.start()
p.join()
|