File size: 6,726 Bytes
507a920
45cfc26
979d590
507a920
4fbf7fa
507a920
4fbf7fa
 
507a920
45cfc26
 
 
 
 
979d590
45cfc26
979d590
d8d4f16
e58377a
45cfc26
979d590
 
b298218
 
 
 
 
 
 
 
 
 
 
45cfc26
979d590
 
 
b298218
 
 
 
 
 
 
 
 
 
979d590
45cfc26
b298218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ebd803
45cfc26
b298218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cfc26
 
 
 
 
 
b298218
 
 
 
45cfc26
b298218
 
 
 
 
 
45cfc26
b298218
 
45cfc26
b298218
 
 
 
 
 
45cfc26
 
 
b298218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45cfc26
b298218
 
 
45cfc26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import random
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import nltk
import gradio as gr
from nltk.sentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
import warnings
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoModelForSequenceClassification,
)

# Suppress warnings and fix Gradio schema bug
warnings.filterwarnings('ignore', category=FutureWarning)
nltk.download('vader_lexicon', quiet=True)

# --- Emotion Analyzer ---
class EmotionalAnalyzer:
    def __init__(self):
        try:
            self.model = AutoModelForSequenceClassification.from_pretrained(
                "bhadresh-savani/distilbert-base-uncased-emotion"
            )
            self.tokenizer = AutoTokenizer.from_pretrained(
                "bhadresh-savani/distilbert-base-uncased-emotion"
            )
        except Exception:
            self.model = None
            self.tokenizer = None

        self.labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
        self.sia = SentimentIntensityAnalyzer()

    def predict_emotion(self, text):
        try:
            if self.model is None or self.tokenizer is None:
                raise ValueError("Model or tokenizer not initialized properly.")
            inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
            with torch.no_grad():
                outputs = self.model(**inputs)
            probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
            return self.labels[torch.argmax(probs).item()]
        except Exception:
            return "Unknown"

    def analyze(self, text):
        try:
            vader_scores = self.sia.polarity_scores(text)
            blob = TextBlob(text)
            blob_data = {
                "polarity": blob.sentiment.polarity,
                "subjectivity": blob.sentiment.subjectivity,
                "word_count": len(blob.words),
                "sentence_count": len(blob.sentences),
            }
            return {
                "emotion": self.predict_emotion(text),
                "vader": vader_scores,
                "textblob": blob_data,
            }
        except Exception:
            return {"emotion": "Unknown", "vader": {}, "textblob": {}}

    def plot_emotions(self):
        try:
            simulated_emotions = {
                "joy": random.randint(10, 30),
                "sadness": random.randint(5, 20),
                "anger": random.randint(10, 25),
                "fear": random.randint(5, 15),
                "love": random.randint(10, 30),
                "surprise": random.randint(5, 20),
            }
            df = pd.DataFrame(list(simulated_emotions.items()), columns=["Emotion", "Percentage"])
            plt.figure(figsize=(8, 4))
            sns.barplot(x="Emotion", y="Percentage", data=df)
            plt.title("Simulated Emotional State")
            plt.tight_layout()
            path = "emotions.png"
            plt.savefig(path)
            plt.close()
            return path
        except Exception:
            return None

# --- Text Completion LLM ---
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/ELN-Llama-1B-base")
model = AutoModelForCausalLM.from_pretrained("diabolic6045/ELN-Llama-1B-base")

def generate_completion(message, temperature, max_length):
    try:
        inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
        input_ids = inputs["input_ids"]
        current_text = message

        for _ in range(max_length - input_ids.shape[1]):
            with torch.no_grad():
                outputs = model(input_ids)
                logits = outputs.logits[:, -1, :] / temperature
                probs = torch.softmax(logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)

            if next_token.item() == tokenizer.eos_token_id:
                break

            input_ids = torch.cat([input_ids, next_token], dim=-1)
            new_token_text = tokenizer.decode(next_token[0], skip_special_tokens=True)
            current_text += new_token_text
        return current_text
    except Exception:
        return "Error generating text."

# --- Emotion-Aware LLM Response ---
def emotion_aware_response(input_text):
    try:
        analyzer = EmotionalAnalyzer()
        results = analyzer.analyze(input_text)
        image_path = analyzer.plot_emotions()

        prompt = (
            f"Input: {input_text}\n"
            f"Detected Emotion: {results['emotion']}\n"
            f"VADER Scores: {results['vader']}\n"
            f"Respond thoughtfully and emotionally aware:"
        )

        inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
        with torch.no_grad():
            output_ids = model.generate(
                inputs.input_ids,
                max_length=512,
                do_sample=True,
                temperature=0.7,
                top_k=50,
                top_p=0.95,
                pad_token_id=tokenizer.eos_token_id
            )
        response = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        summary = (
            f"Emotion: {results['emotion']}\n"
            f"VADER: {results['vader']}\n"
            f"TextBlob: {results['textblob']}\n\n"
            f"LLM Response:\n{response}"
        )
        return summary, image_path
    except Exception:
        return "Error processing emotion-aware response", None

# --- Gradio Interface ---
with gr.Blocks(title="ELN LLaMA 1B Enhanced Demo") as app:
    gr.Markdown("## 🧠 ELN-LLaMA Emotion-Aware & Completion Interface")
    
    with gr.Tab("💬 Emotion-Aware Response"):
        with gr.Row():
            input_text = gr.Textbox(label="Input Text", lines=4, placeholder="Type something with emotion or meaning...")
        with gr.Row():
            text_output = gr.Textbox(label="Response", lines=8)
            img_output = gr.Image(label="Emotional Visualization")
        emotion_btn = gr.Button("Generate Emotion-Aware Response")
        emotion_btn.click(emotion_aware_response, inputs=input_text, outputs=[text_output, img_output])

    with gr.Tab("📝 Text Completion"):
        comp_text = gr.Textbox(label="Prompt", lines=4)
        comp_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
        comp_len = gr.Slider(minimum=50, maximum=500, value=200, step=50, label="Max Length")
        comp_output = gr.Textbox(label="Generated Completion", lines=8)
        comp_button = gr.Button("Complete Text")
        comp_button.click(generate_completion, inputs=[comp_text, comp_temp, comp_len], outputs=comp_output)

app.launch(share=True)