Spaces:
Paused
Paused
File size: 13,041 Bytes
b43a3e1 c2b2b3c 8eadd5d c2b2b3c 5b50796 e58377a 20e25d2 4fbf7fa da18a88 4fbf7fa 5b50796 fe9d707 d8d4f16 fe9d707 c4d75ea b726416 e58377a fe9d707 e58377a 3e002ee c0ba949 e58377a fe9d707 3a91b6e e58377a fe9d707 e58377a c0ba949 e58377a 93bbf6a c0ba949 fe9d707 e58377a c0ba949 e58377a c852ed8 e58377a 455262f fe9d707 4fbf7fa e58377a c0ba949 e58377a c0ba949 e58377a c0ba949 e58377a c0ba949 820534b e58377a c0ba949 e58377a c0ba949 e58377a c0ba949 ea92796 e58377a c0ba949 34771b3 d3eaecf fe9d707 d3eaecf 1ebd803 e58377a 1ebd803 a7402b5 1ebd803 fe9d707 1ebd803 fe9d707 a7402b5 fe9d707 f9b5f97 1ebd803 fe9d707 1ebd803 c4d75ea fe9d707 c4d75ea fe9d707 c4d75ea fe9d707 c4d75ea fe9d707 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from textblob import TextBlob
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)
# Initialize Example Dataset (For Emotion Prediction)
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
try:
encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True)
except TypeError:
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Load pre-trained LLM model and tokenizer for response generation with increased context window
response_model_name = "microsoft/DialoGPT-medium"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
# Set the pad token
response_tokenizer.pad_token = response_tokenizer.eos_token
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'love': {'percentage': 10, 'motivation': 'affectionate', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'neutral': {'percentage': 40, 'motivation': 'balanced', 'intensity': 0},
}
total_percentage = 100
emotion_history_file = 'emotion_history.json'
global conversation_history
conversation_history = []
max_history_length = 30
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def normalize_context(context):
return context.lower().strip()
# Create FitnessMulti and Individual outside of evolve_emotions
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
def evaluate(individual):
emotion_values = individual[:len(emotions)]
intensities = individual[len(emotions):]
total_diff = abs(100 - sum(emotion_values))
intensity_range = max(intensities) - min(intensities)
emotion_balance = max(emotion_values) - min(emotion_values)
return total_diff, intensity_range, emotion_balance
def evolve_emotions():
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 100)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * len(emotions) +
(toolbox.attr_intensity,) * len(emotions), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions)]
intensities = best_individual[len(emotions):]
for i, (emotion, data) in enumerate(emotions.items()):
data['percentage'] = emotion_values[i]
data['intensity'] = intensities[i]
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def update_emotion_history(emotion, percentage, intensity, context):
entry = {
'emotion': emotion,
'percentage': percentage,
'intensity': intensity,
'context': context,
'timestamp': pd.Timestamp.now().isoformat()
}
emotion_history.append(entry)
save_historical_data(emotion_history)
# Adding 443 features
additional_features = {}
for i in range(443):
additional_features[f'feature_{i+1}'] = 0
def feature_transformations():
global additional_features
for feature in additional_features:
additional_features[feature] += random.uniform(-1, 1)
def generate_response(input_text, ai_emotion):
global conversation_history
# Prepare a prompt based on the current emotion and input
prompt = f"You are an AI assistant currently feeling {ai_emotion}. Your response should reflect this emotion. Human: {input_text}\nAI:"
# Add conversation history to the prompt
for entry in conversation_history[-5:]: # Use last 5 entries for context
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024)
# Adjust generation parameters based on emotion
temperature = 0.7
if ai_emotion == 'anger':
temperature = 0.9 # More randomness for angry responses
elif ai_emotion == 'joy':
temperature = 0.5 # More focused responses for joyful state
with torch.no_grad():
response_ids = response_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=1024,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=temperature,
pad_token_id=response_tokenizer.eos_token_id
)
response = response_tokenizer.decode(response_ids[0], skip_special_tokens=True)
# Extract only the AI's response
response = response.split("AI:")[-1].strip()
return response
def predict_emotion(context):
inputs = emotion_prediction_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = emotion_prediction_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
return emotion_labels[predicted_class]
def sentiment_analysis(text):
sia = SentimentIntensityAnalyzer()
sentiment_scores = sia.polarity_scores(text)
return sentiment_scores
def extract_entities(text):
chunked = ne_chunk(pos_tag(word_tokenize(text)))
entities = []
for chunk in chunked:
if hasattr(chunk, 'label'):
entities.append(((' '.join(c[0] for c in chunk)), chunk.label()))
return entities
def analyze_text_complexity(text):
blob = TextBlob(text)
return {
'word_count': len(blob.words),
'sentence_count': len(blob.sentences),
'average_sentence_length': len(blob.words) / len(blob.sentences) if len(blob.sentences) > 0 else 0,
'polarity': blob.sentiment.polarity,
'subjectivity': blob.sentiment.subjectivity
}
def visualize_emotions():
emotions_df = pd.DataFrame([(e, d['percentage'], d['intensity']) for e, d in emotions.items()],
columns=['Emotion', 'Percentage', 'Intensity'])
plt.figure(figsize=(12, 6))
sns.barplot(x='Emotion', y='Percentage', data=emotions_df)
plt.title('Current Emotional State')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig('emotional_state.png')
plt.close()
return 'emotional_state.png'
def interactive_interface(input_text):
global conversation_history
try:
evolve_emotions()
predicted_emotion = predict_emotion(input_text)
sentiment_scores = sentiment_analysis(input_text)
entities = extract_entities(input_text)
text_complexity = analyze_text_complexity(input_text)
# Update AI's emotional state based on input
update_emotion(predicted_emotion, random.uniform(5, 15), random.uniform(0, 10))
# Determine AI's current dominant emotion
ai_emotion = max(emotions, key=lambda e: emotions[e]['percentage'])
# Generate response based on AI's emotion
response = generate_response(input_text, ai_emotion)
# Update conversation history
conversation_history.append({
'user': input_text,
'response': response
})
# Trim conversation history if it exceeds the maximum length
if len(conversation_history) > max_history_length:
conversation_history = conversation_history[-max_history_length:]
update_emotion_history(ai_emotion, emotions[ai_emotion]['percentage'], emotions[ai_emotion]['intensity'], input_text)
feature_transformations()
emotion_visualization = visualize_emotions()
analysis_result = {
'predicted_user_emotion': predicted_emotion,
'ai_emotion': ai_emotion,
'sentiment_scores': sentiment_scores,
'entities': entities,
'text_complexity': text_complexity,
'current_emotional_state': emotions,
'response': response,
'emotion_visualization': emotion_visualization
}
return analysis_result
except Exception as e:
print(f"An error occurred: {str(e)}")
return "I apologize, but I encountered an error while processing your input. Please try again."
def gradio_interface(input_text):
response = interactive_interface(input_text)
if isinstance(response, str):
return response, None
else:
return (
f"User Emotion: {response['predicted_user_emotion']}\n"
f"AI Emotion: {response['ai_emotion']}\n"
f"AI Response: {response['response']}\n\n"
f"Sentiment: {response['sentiment_scores']}\n"
f"Entities: {response['entities']}\n"
f"Text Complexity: {response['text_complexity']}\n",
response['emotion_visualization']
)
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs="text",
outputs=["text", gr.Image(type="filepath")],
title="Enhanced Emotional AI Interface",
description="Enter text to interact with the AI and analyze emotions."
)
if __name__ == "__main__":
iface.launch(share=True)
|