Spaces:
Sleeping
Sleeping
import warnings | |
import numpy as np | |
import pandas as pd | |
import os | |
import json | |
import random | |
import gradio as gr | |
import torch | |
from sklearn.preprocessing import OneHotEncoder | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline | |
from deap import base, creator, tools, algorithms | |
import nltk | |
from nltk.sentiment import SentimentIntensityAnalyzer | |
from nltk.tokenize import word_tokenize | |
from nltk.tag import pos_tag | |
from nltk.chunk import ne_chunk | |
from textblob import TextBlob | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download') | |
# Download necessary NLTK data | |
nltk.download('vader_lexicon', quiet=True) | |
nltk.download('punkt', quiet=True) | |
nltk.download('averaged_perceptron_tagger', quiet=True) | |
nltk.download('maxent_ne_chunker', quiet=True) | |
nltk.download('words', quiet=True) | |
# Initialize Example Dataset (For Emotion Prediction) | |
data = { | |
'context': [ | |
'I am overjoyed', 'I am deeply saddened', 'I am seething with rage', 'I am exhilarated', 'I am tranquil', | |
'I am brimming with joy', 'I am grieving profoundly', 'I am at peace', 'I am frustrated beyond measure', | |
'I am determined to succeed', 'I feel resentment burning within me', 'I am feeling glorious and triumphant', | |
'I am motivated and inspired', 'I am utterly surprised', 'I am gripped by fear', 'I am trusting and open', | |
'I feel a sense of disgust', 'I am optimistic and hopeful', 'I am pessimistic and gloomy', 'I feel bored and listless', | |
'I am envious and jealous' | |
], | |
'emotion': [ | |
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger', | |
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust', | |
'disgust', 'optimism', 'pessimism', 'boredom', 'envy' | |
] | |
} | |
df = pd.DataFrame(data) | |
# Encoding the contexts using One-Hot Encoding (memory-efficient) | |
try: | |
encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True) | |
except TypeError: | |
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True) | |
contexts_encoded = encoder.fit_transform(df[['context']]) | |
# Encoding emotions | |
emotions_target = pd.Categorical(df['emotion']).codes | |
emotion_classes = pd.Categorical(df['emotion']).categories | |
# Load pre-trained BERT model for emotion prediction | |
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion") | |
# Load pre-trained large language model and tokenizer for response generation with increased context window | |
response_model_name = "gpt2-xl" | |
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name) | |
response_model = AutoModelForCausalLM.from_pretrained(response_model_name) | |
# Set the pad token | |
response_tokenizer.pad_token = response_tokenizer.eos_token | |
# Enhanced Emotional States | |
emotions = { | |
'joy': {'percentage': 10, 'motivation': 'positive and uplifting', 'intensity': 0}, | |
'sadness': {'percentage': 10, 'motivation': 'reflective and introspective', 'intensity': 0}, | |
'anger': {'percentage': 10, 'motivation': 'passionate and driven', 'intensity': 0}, | |
'fear': {'percentage': 10, 'motivation': 'cautious and protective', 'intensity': 0}, | |
'love': {'percentage': 10, 'motivation': 'affectionate and caring', 'intensity': 0}, | |
'surprise': {'percentage': 10, 'motivation': 'curious and intrigued', 'intensity': 0}, | |
'neutral': {'percentage': 40, 'motivation': 'balanced and composed', 'intensity': 0}, | |
} | |
total_percentage = 100 | |
emotion_history_file = 'emotion_history.json' | |
global conversation_history | |
conversation_history = [] | |
max_history_length = 1000 # Increase the maximum history length | |
def load_historical_data(file_path=emotion_history_file): | |
if os.path.exists(file_path): | |
with open(file_path, 'r') as file: | |
return json.load(file) | |
return [] | |
def save_historical_data(historical_data, file_path=emotion_history_file): | |
with open(file_path, 'w') as file: | |
json.dump(historical_data, file) | |
emotion_history = load_historical_data() | |
def update_emotion(emotion, percentage, intensity): | |
emotions[emotion]['percentage'] += percentage | |
emotions[emotion]['intensity'] = intensity | |
# Normalize percentages | |
total = sum(e['percentage'] for e in emotions.values()) | |
for e in emotions: | |
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100 | |
def normalize_context(context): | |
return context.lower().strip() | |
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2)) | |
creator.create("Individual", list, fitness=creator.FitnessMulti) | |
def evaluate(individual): | |
emotion_values = individual[:len(emotions)] | |
intensities = individual[len(emotions):] | |
total_diff = abs(100 - sum(emotion_values)) | |
intensity_range = max(intensities) - min(intensities) | |
emotion_balance = max(emotion_values) - min(emotion_values) | |
return total_diff, intensity_range, emotion_balance | |
def evolve_emotions(): | |
toolbox = base.Toolbox() | |
toolbox.register("attr_float", random.uniform, 0, 100) | |
toolbox.register("attr_intensity", random.uniform, 0, 10) | |
toolbox.register("individual", tools.initCycle, creator.Individual, | |
(toolbox.attr_float,) * len(emotions) + | |
(toolbox.attr_intensity,) * len(emotions), n=1) | |
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | |
toolbox.register("mate", tools.cxTwoPoint) | |
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2) | |
toolbox.register("select", tools.selNSGA2) | |
toolbox.register("evaluate", evaluate) | |
population = toolbox.population(n=100) | |
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50, | |
stats=None, halloffame=None, verbose=False) | |
best_individual = tools.selBest(population, k=1)[0] | |
emotion_values = best_individual[:len(emotions)] | |
intensities = best_individual[len(emotions):] | |
for i, (emotion, data) in enumerate(emotions.items()): | |
data['percentage'] = emotion_values[i] | |
data['intensity'] = intensities[i] | |
# Normalize percentages | |
total = sum(e['percentage'] for e in emotions.values()) | |
for e in emotions: | |
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100 | |
def predict_emotion(context): | |
inputs = emotion_prediction_tokenizer(context, return_tensors="pt", truncation=True, max_length=512) | |
with torch.no_grad(): | |
outputs = emotion_prediction_model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predicted_class = torch.argmax(probabilities, dim=-1).item() | |
emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"] | |
return emotion_labels[predicted_class] | |
def sentiment_analysis(text): | |
sia = SentimentIntensityAnalyzer() | |
sentiment_scores = sia.polarity_scores(text) | |
return sentiment_scores | |
def extract_entities(text): | |
chunked = ne_chunk(pos_tag(word_tokenize(text))) | |
entities = [] | |
for chunk in chunked: | |
if hasattr(chunk, 'label'): | |
entities.append(((' '.join(c[0] for c in chunk)), chunk.label())) | |
return entities | |
def analyze_text_complexity(text): | |
blob = TextBlob(text) | |
return { | |
'word_count': len(blob.words), | |
'sentence_count': len(blob.sentences), | |
'average_sentence_length': len(blob.words) / len(blob.sentences) if len(blob.sentences) > 0 else 0, | |
'polarity': blob.sentiment.polarity, | |
'subjectivity': blob.sentiment.subjectivity | |
} | |
def get_ai_emotion(input_text): | |
predicted_emotion = predict_emotion(input_text) | |
ai_emotion = predicted_emotion | |
ai_emotion_percentage = emotions[predicted_emotion]['percentage'] | |
ai_emotion_intensity = emotions[predicted_emotion]['intensity'] | |
return ai_emotion, ai_emotion_percentage, ai_emotion_intensity | |
def generate_emotion_visualization(ai_emotion, ai_emotion_percentage, ai_emotion_intensity): | |
# Generate an emotion visualization based on the AI's emotional state | |
# This could involve creating an image or a visualization using Matplotlib/Seaborn | |
# The generated image should be saved and returned as the output | |
emotion_visualization_path = 'emotional_state.png' | |
# Generate and save the emotion visualization | |
return emotion_visualization_path | |
def generate_response(input_text, ai_emotion, conversation_history): | |
# Prepare a prompt based on the current emotion and input | |
prompt = f"As an AI assistant, I am currently feeling {ai_emotion}. My response will reflect this emotional state. Human: {input_text}\nAI:" | |
# Add conversation history to the prompt | |
for entry in conversation_history[-100:]: # Use last 100 entries for context | |
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt | |
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192) | |
# Adjust generation parameters based on emotion | |
temperature = 0.7 | |
if ai_emotion == 'anger': | |
temperature = 0.9 # More randomness for angry responses | |
elif ai_emotion == 'joy': | |
temperature = 0.5 # More focused responses for joyful state | |
with torch.no_grad(): | |
response_ids = response_model.generate( | |
inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
max_length=8192, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=temperature, | |
pad_token_id=response_tokenizer.eos_token_id | |
) | |
response = response_tokenizer.decode(response_ids[0], skip_special_tokens=True) | |
# Extract only the AI's response | |
response = response.split("AI:")[-1].strip() | |
return response | |
def interactive_interface(input_text): | |
# Perform your processing logic here | |
predicted_emotion = predict_emotion(input_text) | |
sentiment_scores = sentiment_analysis(input_text) | |
entities = extract_entities(input_text) | |
text_complexity = analyze_text_complexity(input_text) | |
ai_emotion, ai_emotion_percentage, ai_emotion_intensity = get_ai_emotion(input_text) | |
emotion_visualization = generate_emotion_visualization(ai_emotion, ai_emotion_percentage, ai_emotion_intensity) | |
response = generate_response(input_text, ai_emotion, conversation_history) | |
# Update conversation history | |
conversation_history.append({'user': input_text, 'response': response}) | |
if len(conversation_history) > max_history_length: | |
conversation_history.pop(0) | |
# Return the expected outputs in the correct order | |
return ( | |
gr.Textbox(predicted_emotion), | |
gr.Textbox(str(sentiment_scores)), | |
gr.Textbox(str(entities)), | |
gr.Textbox(str(text_complexity)), | |
gr.Textbox(ai_emotion), | |
gr.Textbox(str(ai_emotion_percentage)), | |
gr.Textbox(str(ai_emotion_intensity)), | |
gr.Image(emotion_visualization), | |
gr.Textbox(response) | |
) | |
# 443 additional features | |
additional_features = {} | |
for i in range(443): | |
additional_features[f'feature_{i+1}'] = 0 | |
def feature_transformations(): | |
global additional_features | |
for feature in additional_features: | |
additional_features[feature] += random.uniform(-1, 1) | |
def visualize_emotions(): | |
emotions_df = pd.DataFrame([(e, d['percentage'], d['intensity']) for e, d in emotions.items()], | |
columns=['emotion', 'percentage', 'intensity']) | |
plt.figure(figsize=(12, 6)) | |
sns.barplot(x='emotion', y='percentage', data=emotions_df) | |
plt.title('Emotion Percentages') | |
plt.xlabel('Emotion') | |
plt.ylabel('Percentage') | |
plt.xticks(rotation=90) | |
plt.savefig('emotion_percentages.png') | |
plt.figure(figsize=(12, 6)) | |
sns.barplot(x='emotion', y='intensity', data=emotions_df) | |
plt.title('Emotion Intensities') | |
plt.xlabel('Emotion') | |
plt.ylabel('Intensity') | |
plt.xticks(rotation=90) | |
plt.savefig('emotion_intensities.png') | |
return 'emotion_percentages.png', 'emotion_intensities.png' | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=interactive_interface, | |
inputs=gr.Textbox(label="Input Text"), | |
outputs=[ | |
gr.Textbox(label="Predicted Emotion"), | |
gr.Textbox(label="Sentiment Scores"), | |
gr.Textbox(label="Extracted Entities"), | |
gr.Textbox(label="Text Complexity"), | |
gr.Textbox(label="AI Emotion"), | |
gr.Textbox(label="AI Emotion Percentage"), | |
gr.Textbox(label="AI Emotion Intensity"), | |
gr.Image(label="Emotion Visualization"), | |
gr.Textbox(label="AI Response") | |
], | |
title="Emotional AI Assistant", | |
description="An AI assistant that can analyze the emotional content of text and generate responses based on its emotional state.", | |
) | |
iface.launch() | |