File size: 13,128 Bytes
8d79c29
77a0774
5b50796
 
 
 
 
 
 
e58377a
20e25d2
4fbf7fa
 
da18a88
 
 
4fbf7fa
 
 
5b50796
 
 
4fbf7fa
 
 
da18a88
 
 
4fbf7fa
b726416
e58377a
 
ce3343c
 
 
 
 
 
e58377a
 
 
 
 
 
 
 
 
 
3e002ee
 
 
 
c0ba949
 
e58377a
 
 
 
 
 
 
 
064bce5
c0c86be
b726416
8b2be8a
f9b5f97
3a91b6e
 
 
e58377a
 
ce3343c
 
 
 
 
 
 
e58377a
 
c0ba949
e58377a
93bbf6a
c0ba949
064bce5
e58377a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0ba949
 
e58377a
c852ed8
e58377a
 
 
 
4fbf7fa
 
 
e58377a
c0ba949
 
e58377a
c0ba949
e58377a
c0ba949
e58377a
c0ba949
820534b
e58377a
 
c0ba949
e58377a
 
c0ba949
 
e58377a
 
 
 
 
 
 
c0ba949
c852ed8
e58377a
 
c0ba949
 
e58377a
c0ba949
c852ed8
 
e58377a
1ebd803
c0ba949
 
8b2be8a
4daafb8
1ebd803
 
 
 
 
 
 
 
e58377a
1ebd803
 
 
 
a7402b5
1ebd803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7402b5
4daafb8
c0ba949
ce3343c
c0ba949
 
064bce5
c0ba949
 
8b2be8a
c0ba949
 
 
8b2be8a
 
 
 
a7402b5
4fbf7fa
8b2be8a
 
 
 
 
 
 
 
 
 
 
 
 
4fbf7fa
8b2be8a
 
f9b5f97
 
1ebd803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2be8a
1ebd803
 
 
 
4fbf7fa
8b2be8a
 
1ebd803
 
8b2be8a
1ebd803
 
 
 
 
 
064bce5
1ebd803
 
 
 
 
 
 
f9b5f97
1ebd803
 
 
 
8b2be8a
1ebd803
8b2be8a
1ebd803
8b2be8a
 
 
ce3343c
 
 
1ebd803
 
8b2be8a
ce3343c
1ebd803
ce3343c
 
c852ed8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from textblob import TextBlob
import matplotlib.pyplot as plt
import seaborn as sns

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)

# Initialize Example Dataset (For Emotion Prediction)
data = {
    'context': [
        'I am overjoyed', 'I am deeply saddened', 'I am seething with rage', 'I am exhilarated', 'I am tranquil',
        'I am brimming with joy', 'I am grieving profoundly', 'I am at peace', 'I am frustrated beyond measure',
        'I am determined to succeed', 'I feel resentment burning within me', 'I am feeling glorious and triumphant',
        'I am motivated and inspired', 'I am utterly surprised', 'I am gripped by fear', 'I am trusting and open',
        'I feel a sense of disgust', 'I am optimistic and hopeful', 'I am pessimistic and gloomy', 'I feel bored and listless',
        'I am envious and jealous'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
try:
    encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True)
except TypeError:
    encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")

# Load pre-trained large language model and tokenizer for response generation with increased context window
response_model_name = "gpt2-xl"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)

# Set the pad token
response_tokenizer.pad_token = response_tokenizer.eos_token

# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive and uplifting', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'reflective and introspective', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'passionate and driven', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'cautious and protective', 'intensity': 0},
    'love': {'percentage': 10, 'motivation': 'affectionate and caring', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'curious and intrigued', 'intensity': 0},
    'neutral': {'percentage': 40, 'motivation': 'balanced and composed', 'intensity': 0},
}

total_percentage = 100
emotion_history_file = 'emotion_history.json'
global conversation_history
conversation_history = []
max_history_length = 1000  # Increase the maximum history length

def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []

def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

emotion_history = load_historical_data()

def update_emotion(emotion, percentage, intensity):
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    # Normalize percentages
    total = sum(e['percentage'] for e in emotions.values())
    for e in emotions:
        emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100

def normalize_context(context):
    return context.lower().strip()

creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)

def evaluate(individual):
    emotion_values = individual[:len(emotions)]
    intensities = individual[len(emotions):]
    
    total_diff = abs(100 - sum(emotion_values))
    intensity_range = max(intensities) - min(intensities)
    emotion_balance = max(emotion_values) - min(emotion_values)
    
    return total_diff, intensity_range, emotion_balance

def evolve_emotions():
    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 100)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * len(emotions) +
                     (toolbox.attr_intensity,) * len(emotions), n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50,
                              stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions)]
    intensities = best_individual[len(emotions):]

    for i, (emotion, data) in enumerate(emotions.items()):
        data['percentage'] = emotion_values[i]
        data['intensity'] = intensities[i]

    # Normalize percentages
    total = sum(e['percentage'] for e in emotions.values())
    for e in emotions:
        emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100

def predict_emotion(context):
    inputs = emotion_prediction_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        outputs = emotion_prediction_model(**inputs)
    probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(probabilities, dim=-1).item()
    emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
    return emotion_labels[predicted_class]

def sentiment_analysis(text):
    sia = SentimentIntensityAnalyzer()
    sentiment_scores = sia.polarity_scores(text)
    return sentiment_scores

def extract_entities(text):
    chunked = ne_chunk(pos_tag(word_tokenize(text)))
    entities = []
    for chunk in chunked:
        if hasattr(chunk, 'label'):
            entities.append(((' '.join(c[0] for c in chunk)), chunk.label()))
    return entities

def analyze_text_complexity(text):
    blob = TextBlob(text)
    return {
        'word_count': len(blob.words),
        'sentence_count': len(blob.sentences),
        'average_sentence_length': len(blob.words) / len(blob.sentences) if len(blob.sentences) > 0 else 0,
        'polarity': blob.sentiment.polarity,
        'subjectivity': blob.sentiment.subjectivity
    }

def get_ai_emotion(input_text):
    predicted_emotion = predict_emotion(input_text)
    ai_emotion = predicted_emotion
    ai_emotion_percentage = emotions[predicted_emotion]['percentage']
    ai_emotion_intensity = emotions[predicted_emotion]['intensity']
    return ai_emotion, ai_emotion_percentage, ai_emotion_intensity

def generate_emotion_visualization(ai_emotion, ai_emotion_percentage, ai_emotion_intensity):
    # Generate an emotion visualization based on the AI's emotional state
    # This could involve creating an image or a visualization using Matplotlib/Seaborn
    # The generated image should be saved and returned as the output
    emotion_visualization_path = 'emotional_state.png'
    # Generate and save the emotion visualization
    return emotion_visualization_path

def generate_response(input_text, ai_emotion, conversation_history):
    # Prepare a prompt based on the current emotion and input
    prompt = f"As an AI assistant, I am currently feeling {ai_emotion}. My response will reflect this emotional state. Human: {input_text}\nAI:"
    
    # Add conversation history to the prompt
    for entry in conversation_history[-100:]:  # Use last 100 entries for context
        prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
    
    inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192)
    
    # Adjust generation parameters based on emotion
    temperature = 0.7
    if ai_emotion == 'anger':
        temperature = 0.9  # More randomness for angry responses
    elif ai_emotion == 'joy':
        temperature = 0.5  # More focused responses for joyful state

    with torch.no_grad():
        response_ids = response_model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_length=8192,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=temperature,
            pad_token_id=response_tokenizer.eos_token_id
        )
    response = response_tokenizer.decode(response_ids[0], skip_special_tokens=True)
    
    # Extract only the AI's response
    response = response.split("AI:")[-1].strip()
    return response

def interactive_interface(input_text):
    # Perform your processing logic here
    predicted_emotion = predict_emotion(input_text)
    sentiment_scores = sentiment_analysis(input_text)
    entities = extract_entities(input_text)
    text_complexity = analyze_text_complexity(input_text)
    ai_emotion, ai_emotion_percentage, ai_emotion_intensity = get_ai_emotion(input_text)
    emotion_visualization = generate_emotion_visualization(ai_emotion, ai_emotion_percentage, ai_emotion_intensity)
    response = generate_response(input_text, ai_emotion, conversation_history)

    # Update conversation history
    conversation_history.append({'user': input_text, 'response': response})
    if len(conversation_history) > max_history_length:
        conversation_history.pop(0)

    # Return the expected outputs in the correct order
    return (
        gr.Textbox(predicted_emotion),
        gr.Textbox(str(sentiment_scores)),
        gr.Textbox(str(entities)),
        gr.Textbox(str(text_complexity)),
        gr.Textbox(ai_emotion),
        gr.Textbox(str(ai_emotion_percentage)),
        gr.Textbox(str(ai_emotion_intensity)),
        gr.Image(emotion_visualization),
        gr.Textbox(response)
    )

# 443 additional features
additional_features = {}
for i in range(443):
    additional_features[f'feature_{i+1}'] = 0

def feature_transformations():
    global additional_features
    for feature in additional_features:
        additional_features[feature] += random.uniform(-1, 1)

def visualize_emotions():
    emotions_df = pd.DataFrame([(e, d['percentage'], d['intensity']) for e, d in emotions.items()],
                               columns=['emotion', 'percentage', 'intensity'])

    plt.figure(figsize=(12, 6))
    sns.barplot(x='emotion', y='percentage', data=emotions_df)
    plt.title('Emotion Percentages')
    plt.xlabel('Emotion')
    plt.ylabel('Percentage')
    plt.xticks(rotation=90)
    plt.savefig('emotion_percentages.png')

    plt.figure(figsize=(12, 6))
    sns.barplot(x='emotion', y='intensity', data=emotions_df)
    plt.title('Emotion Intensities')
    plt.xlabel('Emotion')
    plt.ylabel('Intensity')
    plt.xticks(rotation=90)
    plt.savefig('emotion_intensities.png')

    return 'emotion_percentages.png', 'emotion_intensities.png'

# Create the Gradio interface
iface = gr.Interface(
    fn=interactive_interface,
    inputs=gr.Textbox(label="Input Text"),
    outputs=[
        gr.Textbox(label="Predicted Emotion"),
        gr.Textbox(label="Sentiment Scores"),
        gr.Textbox(label="Extracted Entities"),
        gr.Textbox(label="Text Complexity"),
        gr.Textbox(label="AI Emotion"),
        gr.Textbox(label="AI Emotion Percentage"),
        gr.Textbox(label="AI Emotion Intensity"),
        gr.Image(label="Emotion Visualization"),
        gr.Textbox(label="AI Response")
    ],
    title="Emotional AI Assistant",
    description="An AI assistant that can analyze the emotional content of text and generate responses based on its emotional state.",
)

iface.launch()