Spaces:
Sleeping
Sleeping
File size: 13,128 Bytes
8d79c29 77a0774 5b50796 e58377a 20e25d2 4fbf7fa da18a88 4fbf7fa 5b50796 4fbf7fa da18a88 4fbf7fa b726416 e58377a ce3343c e58377a 3e002ee c0ba949 e58377a 064bce5 c0c86be b726416 8b2be8a f9b5f97 3a91b6e e58377a ce3343c e58377a c0ba949 e58377a 93bbf6a c0ba949 064bce5 e58377a c0ba949 e58377a c852ed8 e58377a 4fbf7fa e58377a c0ba949 e58377a c0ba949 e58377a c0ba949 e58377a c0ba949 820534b e58377a c0ba949 e58377a c0ba949 e58377a c0ba949 c852ed8 e58377a c0ba949 e58377a c0ba949 c852ed8 e58377a 1ebd803 c0ba949 8b2be8a 4daafb8 1ebd803 e58377a 1ebd803 a7402b5 1ebd803 a7402b5 4daafb8 c0ba949 ce3343c c0ba949 064bce5 c0ba949 8b2be8a c0ba949 8b2be8a a7402b5 4fbf7fa 8b2be8a 4fbf7fa 8b2be8a f9b5f97 1ebd803 8b2be8a 1ebd803 4fbf7fa 8b2be8a 1ebd803 8b2be8a 1ebd803 064bce5 1ebd803 f9b5f97 1ebd803 8b2be8a 1ebd803 8b2be8a 1ebd803 8b2be8a ce3343c 1ebd803 8b2be8a ce3343c 1ebd803 ce3343c c852ed8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from textblob import TextBlob
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)
# Initialize Example Dataset (For Emotion Prediction)
data = {
'context': [
'I am overjoyed', 'I am deeply saddened', 'I am seething with rage', 'I am exhilarated', 'I am tranquil',
'I am brimming with joy', 'I am grieving profoundly', 'I am at peace', 'I am frustrated beyond measure',
'I am determined to succeed', 'I feel resentment burning within me', 'I am feeling glorious and triumphant',
'I am motivated and inspired', 'I am utterly surprised', 'I am gripped by fear', 'I am trusting and open',
'I feel a sense of disgust', 'I am optimistic and hopeful', 'I am pessimistic and gloomy', 'I feel bored and listless',
'I am envious and jealous'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
try:
encoder = OneHotEncoder(handle_unknown='ignore', sparse_output=True)
except TypeError:
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Load pre-trained large language model and tokenizer for response generation with increased context window
response_model_name = "gpt2-xl"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
# Set the pad token
response_tokenizer.pad_token = response_tokenizer.eos_token
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive and uplifting', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'reflective and introspective', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'passionate and driven', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'cautious and protective', 'intensity': 0},
'love': {'percentage': 10, 'motivation': 'affectionate and caring', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'curious and intrigued', 'intensity': 0},
'neutral': {'percentage': 40, 'motivation': 'balanced and composed', 'intensity': 0},
}
total_percentage = 100
emotion_history_file = 'emotion_history.json'
global conversation_history
conversation_history = []
max_history_length = 1000 # Increase the maximum history length
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def normalize_context(context):
return context.lower().strip()
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
def evaluate(individual):
emotion_values = individual[:len(emotions)]
intensities = individual[len(emotions):]
total_diff = abs(100 - sum(emotion_values))
intensity_range = max(intensities) - min(intensities)
emotion_balance = max(emotion_values) - min(emotion_values)
return total_diff, intensity_range, emotion_balance
def evolve_emotions():
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 100)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * len(emotions) +
(toolbox.attr_intensity,) * len(emotions), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=50,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions)]
intensities = best_individual[len(emotions):]
for i, (emotion, data) in enumerate(emotions.items()):
data['percentage'] = emotion_values[i]
data['intensity'] = intensities[i]
# Normalize percentages
total = sum(e['percentage'] for e in emotions.values())
for e in emotions:
emotions[e]['percentage'] = (emotions[e]['percentage'] / total) * 100
def predict_emotion(context):
inputs = emotion_prediction_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = emotion_prediction_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
return emotion_labels[predicted_class]
def sentiment_analysis(text):
sia = SentimentIntensityAnalyzer()
sentiment_scores = sia.polarity_scores(text)
return sentiment_scores
def extract_entities(text):
chunked = ne_chunk(pos_tag(word_tokenize(text)))
entities = []
for chunk in chunked:
if hasattr(chunk, 'label'):
entities.append(((' '.join(c[0] for c in chunk)), chunk.label()))
return entities
def analyze_text_complexity(text):
blob = TextBlob(text)
return {
'word_count': len(blob.words),
'sentence_count': len(blob.sentences),
'average_sentence_length': len(blob.words) / len(blob.sentences) if len(blob.sentences) > 0 else 0,
'polarity': blob.sentiment.polarity,
'subjectivity': blob.sentiment.subjectivity
}
def get_ai_emotion(input_text):
predicted_emotion = predict_emotion(input_text)
ai_emotion = predicted_emotion
ai_emotion_percentage = emotions[predicted_emotion]['percentage']
ai_emotion_intensity = emotions[predicted_emotion]['intensity']
return ai_emotion, ai_emotion_percentage, ai_emotion_intensity
def generate_emotion_visualization(ai_emotion, ai_emotion_percentage, ai_emotion_intensity):
# Generate an emotion visualization based on the AI's emotional state
# This could involve creating an image or a visualization using Matplotlib/Seaborn
# The generated image should be saved and returned as the output
emotion_visualization_path = 'emotional_state.png'
# Generate and save the emotion visualization
return emotion_visualization_path
def generate_response(input_text, ai_emotion, conversation_history):
# Prepare a prompt based on the current emotion and input
prompt = f"As an AI assistant, I am currently feeling {ai_emotion}. My response will reflect this emotional state. Human: {input_text}\nAI:"
# Add conversation history to the prompt
for entry in conversation_history[-100:]: # Use last 100 entries for context
prompt = f"Human: {entry['user']}\nAI: {entry['response']}\n" + prompt
inputs = response_tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=8192)
# Adjust generation parameters based on emotion
temperature = 0.7
if ai_emotion == 'anger':
temperature = 0.9 # More randomness for angry responses
elif ai_emotion == 'joy':
temperature = 0.5 # More focused responses for joyful state
with torch.no_grad():
response_ids = response_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_length=8192,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=temperature,
pad_token_id=response_tokenizer.eos_token_id
)
response = response_tokenizer.decode(response_ids[0], skip_special_tokens=True)
# Extract only the AI's response
response = response.split("AI:")[-1].strip()
return response
def interactive_interface(input_text):
# Perform your processing logic here
predicted_emotion = predict_emotion(input_text)
sentiment_scores = sentiment_analysis(input_text)
entities = extract_entities(input_text)
text_complexity = analyze_text_complexity(input_text)
ai_emotion, ai_emotion_percentage, ai_emotion_intensity = get_ai_emotion(input_text)
emotion_visualization = generate_emotion_visualization(ai_emotion, ai_emotion_percentage, ai_emotion_intensity)
response = generate_response(input_text, ai_emotion, conversation_history)
# Update conversation history
conversation_history.append({'user': input_text, 'response': response})
if len(conversation_history) > max_history_length:
conversation_history.pop(0)
# Return the expected outputs in the correct order
return (
gr.Textbox(predicted_emotion),
gr.Textbox(str(sentiment_scores)),
gr.Textbox(str(entities)),
gr.Textbox(str(text_complexity)),
gr.Textbox(ai_emotion),
gr.Textbox(str(ai_emotion_percentage)),
gr.Textbox(str(ai_emotion_intensity)),
gr.Image(emotion_visualization),
gr.Textbox(response)
)
# 443 additional features
additional_features = {}
for i in range(443):
additional_features[f'feature_{i+1}'] = 0
def feature_transformations():
global additional_features
for feature in additional_features:
additional_features[feature] += random.uniform(-1, 1)
def visualize_emotions():
emotions_df = pd.DataFrame([(e, d['percentage'], d['intensity']) for e, d in emotions.items()],
columns=['emotion', 'percentage', 'intensity'])
plt.figure(figsize=(12, 6))
sns.barplot(x='emotion', y='percentage', data=emotions_df)
plt.title('Emotion Percentages')
plt.xlabel('Emotion')
plt.ylabel('Percentage')
plt.xticks(rotation=90)
plt.savefig('emotion_percentages.png')
plt.figure(figsize=(12, 6))
sns.barplot(x='emotion', y='intensity', data=emotions_df)
plt.title('Emotion Intensities')
plt.xlabel('Emotion')
plt.ylabel('Intensity')
plt.xticks(rotation=90)
plt.savefig('emotion_intensities.png')
return 'emotion_percentages.png', 'emotion_intensities.png'
# Create the Gradio interface
iface = gr.Interface(
fn=interactive_interface,
inputs=gr.Textbox(label="Input Text"),
outputs=[
gr.Textbox(label="Predicted Emotion"),
gr.Textbox(label="Sentiment Scores"),
gr.Textbox(label="Extracted Entities"),
gr.Textbox(label="Text Complexity"),
gr.Textbox(label="AI Emotion"),
gr.Textbox(label="AI Emotion Percentage"),
gr.Textbox(label="AI Emotion Intensity"),
gr.Image(label="Emotion Visualization"),
gr.Textbox(label="AI Response")
],
title="Emotional AI Assistant",
description="An AI assistant that can analyze the emotional content of text and generate responses based on its emotional state.",
)
iface.launch()
|