Cain / app.py
Sephfox's picture
Update app.py
00837e2 verified
import warnings
import os
import json
import random
import gradio as gr
import torch
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from textblob import TextBlob
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, LlamaConfig
warnings.filterwarnings('ignore', category=FutureWarning)
# --- Monkey Patch for Gradio Client JSON Schema Bug ---
import gradio_client.utils as client_utils
original_get_type = client_utils.get_type
def patched_get_type(schema):
if not isinstance(schema, dict):
return type(schema).__name__
return original_get_type(schema)
client_utils.get_type = patched_get_type
if not hasattr(client_utils, "_original_json_schema_to_python_type"):
client_utils._original_json_schema_to_python_type = client_utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema, defs=None):
if isinstance(schema, bool):
return "bool"
return client_utils._original_json_schema_to_python_type(schema, defs)
client_utils._json_schema_to_python_type = patched_json_schema_to_python_type
# --- End of Monkey Patch ---
# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
# ---------------------------
# Backend Support for GGUF Models
# ---------------------------
try:
from llama_cpp import Llama
BACKEND = "llama_cpp"
except ImportError:
BACKEND = "transformers"
# ---------------------------
# Emotional Analysis Module
# ---------------------------
class EmotionalAnalyzer:
def __init__(self):
self.emotion_model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion"
)
self.emotion_tokenizer = AutoTokenizer.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion"
)
self.emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
self.sia = SentimentIntensityAnalyzer()
def predict_emotion(self, text):
inputs = self.emotion_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = self.emotion_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_idx = torch.argmax(probabilities, dim=-1).item()
return self.emotion_labels[predicted_idx]
def sentiment_analysis(self, text):
return self.sia.polarity_scores(text)
def detailed_emotional_analysis(self, text):
vader_scores = self.sentiment_analysis(text)
blob = TextBlob(text)
textblob_analysis = {
'polarity': blob.sentiment.polarity,
'subjectivity': blob.sentiment.subjectivity,
'word_count': len(blob.words),
'sentence_count': len(blob.sentences)
}
predicted_emotion = self.predict_emotion(text)
return {
'predicted_emotion': predicted_emotion,
'vader': vader_scores,
'textblob': textblob_analysis
}
def visualize_emotions(self, emotions_dict):
emotions_df = pd.DataFrame(list(emotions_dict.items()), columns=['Emotion', 'Percentage'])
plt.figure(figsize=(8, 4))
sns.barplot(x='Emotion', y='Percentage', data=emotions_df)
plt.title('Current Emotional State')
plt.tight_layout()
image_path = 'emotional_state.png'
plt.savefig(image_path)
plt.close()
return image_path
# ---------------------------
# LLM Response Generator Module
# ---------------------------
class LLMResponder:
def __init__(self, model_name="SicariusSicariiStuff/Impish_LLAMA_3B_GGUF"):
self.model_name = model_name
if BACKEND == "llama_cpp":
# Replace with the actual path to your GGUF file.
self.llm = Llama(model_path="path/to/your/gguf/file.gguf", n_ctx=1024)
self.backend = "llama_cpp"
else:
# Create a dummy config using LlamaConfig so the model loads despite missing keys.
dummy_config = LlamaConfig.from_dict({"model_type": "llama"})
try:
self.llm_tokenizer = AutoTokenizer.from_pretrained(model_name, config=dummy_config, trust_remote_code=True)
except Exception as e:
print(f"Error loading tokenizer from {model_name}; using fallback tokenizer.")
fallback_model = "sentence-transformers/all-MiniLM-L6-v2"
self.llm_tokenizer = AutoTokenizer.from_pretrained(fallback_model, config=dummy_config, trust_remote_code=True)
try:
self.llm_model = AutoModelForCausalLM.from_pretrained(model_name, config=dummy_config, trust_remote_code=True)
except Exception as e:
print(f"Error loading model from {model_name}; using fallback model.")
fallback_model = "sentence-transformers/all-MiniLM-L6-v2"
self.llm_model = AutoModelForCausalLM.from_pretrained(fallback_model, config=dummy_config, trust_remote_code=True)
self.backend = "transformers"
def generate_response(self, prompt):
if self.backend == "llama_cpp":
result = self.llm(prompt=prompt, max_tokens=256, temperature=0.95, top_p=0.95)
response = result.get("response", "")
else:
inputs = self.llm_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
with torch.no_grad():
output_ids = self.llm_model.generate(
inputs.input_ids,
max_length=1024,
do_sample=True,
top_p=0.95,
top_k=50,
pad_token_id=self.llm_tokenizer.eos_token_id
)
response = self.llm_tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
# ---------------------------
# Main Interactive Interface Function
# ---------------------------
def interactive_interface(input_text):
emotion_analyzer = EmotionalAnalyzer()
llm_responder = LLMResponder()
emotional_data = emotion_analyzer.detailed_emotional_analysis(input_text)
current_emotions = {
'joy': random.randint(10, 30),
'sadness': random.randint(5, 20),
'anger': random.randint(10, 25),
'fear': random.randint(5, 15),
'love': random.randint(10, 30),
'surprise': random.randint(5, 20)
}
emotion_image = emotion_analyzer.visualize_emotions(current_emotions)
prompt = (
f"Input: {input_text}\n"
f"Detected Emotion: {emotional_data['predicted_emotion']}\n"
f"VADER Scores: {emotional_data['vader']}\n"
"Provide a thoughtful, emotionally aware response that reflects the above data:"
)
llm_response = llm_responder.generate_response(prompt)
result = {
'detailed_emotional_analysis': emotional_data,
'llm_response': llm_response,
'emotion_visualization': emotion_image
}
return result
def gradio_interface(input_text):
result = interactive_interface(input_text)
output_text = (
f"Detailed Emotional Analysis:\n"
f" - Predicted Emotion: {result['detailed_emotional_analysis']['predicted_emotion']}\n"
f" - VADER: {result['detailed_emotional_analysis']['vader']}\n"
f" - TextBlob: {result['detailed_emotional_analysis']['textblob']}\n\n"
f"LLM Response:\n{result['llm_response']}"
)
return output_text, result['emotion_visualization']
# ---------------------------
# Create Gradio Interface
# ---------------------------
iface = gr.Interface(
fn=gradio_interface,
inputs="text",
outputs=["text", gr.Image(type="filepath")],
title="Enhanced Emotional Analysis with GGUF LLM Support",
description="Enter text to perform detailed emotional analysis and generate an emotionally aware response using the Impish_LLAMA_3B_GGUF model."
)
if __name__ == "__main__":
iface.launch()