Sephfox commited on
Commit
65e9fab
·
verified ·
1 Parent(s): ae0544b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -2
app.py CHANGED
@@ -64,8 +64,15 @@ class AdvancedNN(nn.Module):
64
 
65
  # Train Advanced Neural Network
66
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
67
- X_train = X_train.toarray() # Convert sparse matrix to dense
68
- y_train = y_train.to_numpy() # Convert pandas Series to numpy array
 
 
 
 
 
 
 
69
  input_size = X_train.shape[1]
70
  hidden_size = 64
71
  num_classes = len(emotion_classes)
@@ -77,6 +84,13 @@ optimizer = optim.Adam(model.parameters(), lr=0.001)
77
  train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
78
  train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
79
 
 
 
 
 
 
 
 
80
  # Ensemble with Random Forest and Gradient Boosting
81
  rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
82
  gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
 
64
 
65
  # Train Advanced Neural Network
66
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
67
+
68
+ # Convert to dense array if it's a sparse matrix, otherwise leave as is
69
+ X_train = X_train.toarray() if hasattr(X_train, 'toarray') else X_train
70
+ X_test = X_test.toarray() if hasattr(X_test, 'toarray') else X_test
71
+
72
+ # Ensure y_train and y_test are numpy arrays
73
+ y_train = y_train.to_numpy() if hasattr(y_train, 'to_numpy') else np.array(y_train)
74
+ y_test = y_test.to_numpy() if hasattr(y_test, 'to_numpy') else np.array(y_test)
75
+
76
  input_size = X_train.shape[1]
77
  hidden_size = 64
78
  num_classes = len(emotion_classes)
 
84
  train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
85
  train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
86
 
87
+ model = AdvancedNN(input_size, hidden_size, num_classes)
88
+ criterion = nn.CrossEntropyLoss()
89
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
90
+
91
+ train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
92
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
93
+
94
  # Ensemble with Random Forest and Gradient Boosting
95
  rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
96
  gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)