Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -64,8 +64,15 @@ class AdvancedNN(nn.Module):
|
|
64 |
|
65 |
# Train Advanced Neural Network
|
66 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
input_size = X_train.shape[1]
|
70 |
hidden_size = 64
|
71 |
num_classes = len(emotion_classes)
|
@@ -77,6 +84,13 @@ optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
77 |
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
|
78 |
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Ensemble with Random Forest and Gradient Boosting
|
81 |
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
82 |
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
|
|
|
64 |
|
65 |
# Train Advanced Neural Network
|
66 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
67 |
+
|
68 |
+
# Convert to dense array if it's a sparse matrix, otherwise leave as is
|
69 |
+
X_train = X_train.toarray() if hasattr(X_train, 'toarray') else X_train
|
70 |
+
X_test = X_test.toarray() if hasattr(X_test, 'toarray') else X_test
|
71 |
+
|
72 |
+
# Ensure y_train and y_test are numpy arrays
|
73 |
+
y_train = y_train.to_numpy() if hasattr(y_train, 'to_numpy') else np.array(y_train)
|
74 |
+
y_test = y_test.to_numpy() if hasattr(y_test, 'to_numpy') else np.array(y_test)
|
75 |
+
|
76 |
input_size = X_train.shape[1]
|
77 |
hidden_size = 64
|
78 |
num_classes = len(emotion_classes)
|
|
|
84 |
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
|
85 |
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
86 |
|
87 |
+
model = AdvancedNN(input_size, hidden_size, num_classes)
|
88 |
+
criterion = nn.CrossEntropyLoss()
|
89 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
90 |
+
|
91 |
+
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
|
92 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
93 |
+
|
94 |
# Ensemble with Random Forest and Gradient Boosting
|
95 |
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
96 |
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
|