Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -64,6 +64,8 @@ class AdvancedNN(nn.Module):
|
|
64 |
|
65 |
# Train Advanced Neural Network
|
66 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
|
|
|
|
67 |
input_size = X_train.shape[1]
|
68 |
hidden_size = 64
|
69 |
num_classes = len(emotion_classes)
|
@@ -75,15 +77,6 @@ optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
75 |
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
|
76 |
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
77 |
|
78 |
-
num_epochs = 100
|
79 |
-
for epoch in range(num_epochs):
|
80 |
-
for batch_X, batch_y in train_loader:
|
81 |
-
outputs = model(batch_X)
|
82 |
-
loss = criterion(outputs, batch_y)
|
83 |
-
optimizer.zero_grad()
|
84 |
-
loss.backward()
|
85 |
-
optimizer.step()
|
86 |
-
|
87 |
# Ensemble with Random Forest and Gradient Boosting
|
88 |
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
89 |
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
|
|
|
64 |
|
65 |
# Train Advanced Neural Network
|
66 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
67 |
+
X_train = X_train.toarray() # Convert sparse matrix to dense
|
68 |
+
y_train = y_train.to_numpy() # Convert pandas Series to numpy array
|
69 |
input_size = X_train.shape[1]
|
70 |
hidden_size = 64
|
71 |
num_classes = len(emotion_classes)
|
|
|
77 |
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
|
78 |
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Ensemble with Random Forest and Gradient Boosting
|
81 |
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
82 |
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
|