Sephfox commited on
Commit
ae0544b
·
verified ·
1 Parent(s): e6344ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -9
app.py CHANGED
@@ -64,6 +64,8 @@ class AdvancedNN(nn.Module):
64
 
65
  # Train Advanced Neural Network
66
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
 
 
67
  input_size = X_train.shape[1]
68
  hidden_size = 64
69
  num_classes = len(emotion_classes)
@@ -75,15 +77,6 @@ optimizer = optim.Adam(model.parameters(), lr=0.001)
75
  train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
76
  train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
77
 
78
- num_epochs = 100
79
- for epoch in range(num_epochs):
80
- for batch_X, batch_y in train_loader:
81
- outputs = model(batch_X)
82
- loss = criterion(outputs, batch_y)
83
- optimizer.zero_grad()
84
- loss.backward()
85
- optimizer.step()
86
-
87
  # Ensemble with Random Forest and Gradient Boosting
88
  rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
89
  gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
 
64
 
65
  # Train Advanced Neural Network
66
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
67
+ X_train = X_train.toarray() # Convert sparse matrix to dense
68
+ y_train = y_train.to_numpy() # Convert pandas Series to numpy array
69
  input_size = X_train.shape[1]
70
  hidden_size = 64
71
  num_classes = len(emotion_classes)
 
77
  train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
78
  train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
79
 
 
 
 
 
 
 
 
 
 
80
  # Ensemble with Random Forest and Gradient Boosting
81
  rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
82
  gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)