Sephfox commited on
Commit
e6344ec
·
verified ·
1 Parent(s): bc4f40b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +178 -88
app.py CHANGED
@@ -5,16 +5,18 @@ import os
5
  import json
6
  import random
7
  import gradio as gr
8
- from sklearn.ensemble import IsolationForest
9
- from sklearn.model_selection import train_test_split
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
 
12
  from deap import base, creator, tools, algorithms
13
- from transformers import AutoModelForCausalLM, AutoTokenizer
14
  import torch
15
- import torch.multiprocessing as mp
 
 
16
 
17
- # Suppress specific warnings
18
  warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
19
 
20
  # Initialize Example Emotions Dataset
@@ -42,41 +44,82 @@ contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
42
  emotions_target = df['emotion'].astype('category').cat.codes
43
  emotion_classes = df['emotion'].astype('category').cat.categories
44
 
45
- # Train Neural Network
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
47
- model = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, random_state=42)
48
- model.fit(X_train, y_train)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  # Isolation Forest Anomaly Detection Model
51
- historical_data = np.array([model.predict(contexts_encoded)]).T
52
  isolation_forest = IsolationForest(contamination=0.1, random_state=42)
53
  isolation_forest.fit(historical_data)
54
 
55
- # Emotional States with 20 emotions
56
  emotions = {
57
- 'joy': {'percentage': 10, 'motivation': 'positive'},
58
- 'pleasure': {'percentage': 10, 'motivation': 'selfish'},
59
- 'sadness': {'percentage': 10, 'motivation': 'negative'},
60
- 'grief': {'percentage': 10, 'motivation': 'negative'},
61
- 'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
62
- 'calmness': {'percentage': 10, 'motivation': 'neutral'},
63
- 'determination': {'percentage': 10, 'motivation': 'positive'},
64
- 'resentment': {'percentage': 10, 'motivation': 'negative'},
65
- 'glory': {'percentage': 10, 'motivation': 'positive'},
66
- 'motivation': {'percentage': 10, 'motivation': 'positive'},
67
- 'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
68
- 'fear': {'percentage': 10, 'motivation': 'defensive'},
69
- 'surprise': {'percentage': 10, 'motivation': 'unexpected'},
70
- 'anticipation': {'percentage': 10, 'motivation': 'predictive'},
71
- 'trust': {'percentage': 10, 'motivation': 'reliable'},
72
- 'disgust': {'percentage': 10, 'motivation': 'repulsive'},
73
- 'optimism': {'percentage': 10, 'motivation': 'hopeful'},
74
- 'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
75
- 'boredom': {'percentage': 10, 'motivation': 'indifferent'},
76
- 'envy': {'percentage': 10, 'motivation': 'jealous'}
77
  }
78
 
79
- # Adjust all emotions to a total of 200%
80
  total_percentage = 200
81
  default_percentage = total_percentage / len(emotions)
82
  for emotion in emotions:
@@ -84,105 +127,152 @@ for emotion in emotions:
84
 
85
  emotion_history_file = 'emotion_history.json'
86
 
87
- # Load historical data from file if exists
88
  def load_historical_data(file_path=emotion_history_file):
89
  if os.path.exists(file_path):
90
  with open(file_path, 'r') as file:
91
  return json.load(file)
92
  return []
93
 
94
- # Save historical data to file
95
  def save_historical_data(historical_data, file_path=emotion_history_file):
96
  with open(file_path, 'w') as file:
97
  json.dump(historical_data, file)
98
 
99
- # Load previous emotional states
100
- emotion_history = load_historical_data()
101
-
102
- # Function to update emotions
103
- def update_emotion(emotion, percentage):
104
  emotions['ideal_state']['percentage'] -= percentage
105
  emotions[emotion]['percentage'] += percentage
 
106
 
107
- # Ensure total percentage remains 200%
108
  total_current = sum(e['percentage'] for e in emotions.values())
109
  adjustment = total_percentage - total_current
110
  emotions['ideal_state']['percentage'] += adjustment
111
 
112
- # Function to normalize context
113
  def normalize_context(context):
114
  return context.lower().strip()
115
 
116
- # Function to evolve emotions using genetic algorithm
117
  def evolve_emotions():
118
- # Define the fitness function
119
  def evaluate(individual):
120
- ideal_state = individual[-1] # Last value is the ideal state percentage
121
- other_emotions = individual[:-1] # All other emotions
122
- return abs(ideal_state - 100), sum(other_emotions)
 
 
 
123
 
124
- # Register the genetic algorithm components
125
- creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
126
- creator.create("Individual", list, fitness=creator.FitnessMin)
127
 
128
- # Create individuals and population
129
  toolbox = base.Toolbox()
130
- toolbox.register("attribute", lambda: random.uniform(0, 20))
131
- toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
132
- toolbox.register("ideal_state", lambda: random.uniform(80, 120))
133
- toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
134
- toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)
 
 
 
135
 
136
- # Register genetic operators
137
  toolbox.register("evaluate", evaluate)
138
- toolbox.register("mate", tools.cxBlend, alpha=0.5)
139
- toolbox.register("mutate", tools.mutGaussian, mu=10, sigma=5, indpb=0.3)
140
- toolbox.register("select", tools.selTournament, tournsize=3)
141
-
142
- # Initialize the population
143
- population = toolbox.population(n=10)
144
 
145
- # Run genetic algorithm
146
- population, log = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=20, verbose=False)
 
 
147
 
148
- # Update the emotions with the best individual
149
  best_individual = tools.selBest(population, k=1)[0]
 
150
  for idx, emotion in enumerate(emotions.keys()):
151
- emotions[emotion]['percentage'] = best_individual[idx]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
- # Function to get emotional response
154
  def get_emotional_response(context):
155
- # Normalize context
156
  context = normalize_context(context)
157
-
158
- # Encode the context and predict the emotion using the neural network
159
  context_encoded = encoder.transform([[context]]).toarray()
160
- prediction = model.predict(context_encoded)
161
- predicted_emotion = emotion_classes[prediction[0]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
- # Update emotions based on predicted emotion
164
- update_emotion(predicted_emotion, 20)
 
 
 
165
 
166
- # Evolve emotions
167
  evolve_emotions()
168
 
169
- # Save the updated emotion history
170
  emotion_history.append(emotions.copy())
171
  save_historical_data(emotion_history)
172
 
173
- return f"Emotion: {predicted_emotion}, Emotion Details: {emotions[predicted_emotion]}"
 
 
 
 
 
 
174
 
175
- # Initialize the pre-trained language model (Phi 3 Mini)
176
- model_name = 'microsoft/phi3-mini'
177
- tokenizer = AutoTokenizer.from_pretrained(model_name, force_download=True)
178
- lm_model = AutoModelForCausalLM.from_pretrained(model_name, force_download=True)
 
 
179
 
180
- # Multiprocessing context setting (ensure it's set only once)
181
- if __name__ == '__main__':
182
- if mp.get_start_method(allow_none=True) != 'spawn':
183
- mp.set_start_method('spawn')
 
 
 
 
184
 
185
- # Example usage
186
- context_input = "I am feeling very joyful today"
187
- emotional_response = get_emotional_response(context_input)
188
- print(emotional_response)
 
5
  import json
6
  import random
7
  import gradio as gr
8
+ from sklearn.ensemble import IsolationForest, RandomForestClassifier, GradientBoostingClassifier
9
+ from sklearn.model_selection import train_test_split, GridSearchCV
10
  from sklearn.preprocessing import OneHotEncoder
11
  from sklearn.neural_network import MLPClassifier
12
+ from sklearn.metrics import accuracy_score
13
  from deap import base, creator, tools, algorithms
14
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
15
  import torch
16
+ import torch.nn as nn
17
+ import torch.optim as optim
18
+ from torch.utils.data import DataLoader, TensorDataset
19
 
 
20
  warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
21
 
22
  # Initialize Example Emotions Dataset
 
44
  emotions_target = df['emotion'].astype('category').cat.codes
45
  emotion_classes = df['emotion'].astype('category').cat.categories
46
 
47
+ # Advanced Neural Network with PyTorch
48
+ class AdvancedNN(nn.Module):
49
+ def __init__(self, input_size, hidden_size, num_classes):
50
+ super(AdvancedNN, self).__init__()
51
+ self.layer1 = nn.Linear(input_size, hidden_size)
52
+ self.layer2 = nn.Linear(hidden_size, hidden_size)
53
+ self.layer3 = nn.Linear(hidden_size, num_classes)
54
+ self.relu = nn.ReLU()
55
+ self.dropout = nn.Dropout(0.2)
56
+
57
+ def forward(self, x):
58
+ x = self.relu(self.layer1(x))
59
+ x = self.dropout(x)
60
+ x = self.relu(self.layer2(x))
61
+ x = self.dropout(x)
62
+ x = self.layer3(x)
63
+ return x
64
+
65
+ # Train Advanced Neural Network
66
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
67
+ input_size = X_train.shape[1]
68
+ hidden_size = 64
69
+ num_classes = len(emotion_classes)
70
+
71
+ model = AdvancedNN(input_size, hidden_size, num_classes)
72
+ criterion = nn.CrossEntropyLoss()
73
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
74
+
75
+ train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
76
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
77
+
78
+ num_epochs = 100
79
+ for epoch in range(num_epochs):
80
+ for batch_X, batch_y in train_loader:
81
+ outputs = model(batch_X)
82
+ loss = criterion(outputs, batch_y)
83
+ optimizer.zero_grad()
84
+ loss.backward()
85
+ optimizer.step()
86
+
87
+ # Ensemble with Random Forest and Gradient Boosting
88
+ rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
89
+ gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
90
+
91
+ rf_model.fit(X_train, y_train)
92
+ gb_model.fit(X_train, y_train)
93
 
94
  # Isolation Forest Anomaly Detection Model
95
+ historical_data = np.array([model(torch.FloatTensor(contexts_encoded)).argmax(1).numpy()]).T
96
  isolation_forest = IsolationForest(contamination=0.1, random_state=42)
97
  isolation_forest.fit(historical_data)
98
 
99
+ # Enhanced Emotional States
100
  emotions = {
101
+ 'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
102
+ 'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
103
+ 'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
104
+ 'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
105
+ 'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
106
+ 'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
107
+ 'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
108
+ 'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
109
+ 'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
110
+ 'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
111
+ 'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
112
+ 'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
113
+ 'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
114
+ 'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
115
+ 'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
116
+ 'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
117
+ 'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
118
+ 'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
119
+ 'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
120
+ 'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
121
  }
122
 
 
123
  total_percentage = 200
124
  default_percentage = total_percentage / len(emotions)
125
  for emotion in emotions:
 
127
 
128
  emotion_history_file = 'emotion_history.json'
129
 
 
130
  def load_historical_data(file_path=emotion_history_file):
131
  if os.path.exists(file_path):
132
  with open(file_path, 'r') as file:
133
  return json.load(file)
134
  return []
135
 
 
136
  def save_historical_data(historical_data, file_path=emotion_history_file):
137
  with open(file_path, 'w') as file:
138
  json.dump(historical_data, file)
139
 
140
+ emotion_history = load_historical_data
141
+ def update_emotion(emotion, percentage, intensity):
 
 
 
142
  emotions['ideal_state']['percentage'] -= percentage
143
  emotions[emotion]['percentage'] += percentage
144
+ emotions[emotion]['intensity'] = intensity
145
 
 
146
  total_current = sum(e['percentage'] for e in emotions.values())
147
  adjustment = total_percentage - total_current
148
  emotions['ideal_state']['percentage'] += adjustment
149
 
 
150
  def normalize_context(context):
151
  return context.lower().strip()
152
 
153
+ # Advanced Genetic Algorithm for Emotion Evolution
154
  def evolve_emotions():
 
155
  def evaluate(individual):
156
+ ideal_state = individual[-1]
157
+ other_emotions = individual[:-1]
158
+ intensities = individual[-21:-1]
159
+ return (abs(ideal_state - 100),
160
+ sum(other_emotions),
161
+ max(intensities) - min(intensities))
162
 
163
+ creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
164
+ creator.create("Individual", list, fitness=creator.FitnessMulti)
 
165
 
 
166
  toolbox = base.Toolbox()
167
+ toolbox.register("attr_float", random.uniform, 0, 20)
168
+ toolbox.register("attr_intensity", random.uniform, 0, 10)
169
+ toolbox.register("individual", tools.initCycle, creator.Individual,
170
+ (toolbox.attr_float,) * (len(emotions) - 1) +
171
+ (toolbox.attr_intensity,) * len(emotions) +
172
+ (lambda: random.uniform(80, 120),),
173
+ n=1)
174
+ toolbox.register("population", tools.initRepeat, list, toolbox.individual)
175
 
 
176
  toolbox.register("evaluate", evaluate)
177
+ toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=0, up=120, eta=20.0)
178
+ toolbox.register("mutate", tools.mutPolynomialBounded, low=0, up=120, eta=20.0, indpb=0.1)
179
+ toolbox.register("select", tools.selNSGA2)
 
 
 
180
 
181
+ population = toolbox.population(n=100)
182
+
183
+ algorithms.eaMuPlusLambda(population, toolbox, mu=100, lambda_=100,
184
+ cxpb=0.7, mutpb=0.3, ngen=50, verbose=False)
185
 
 
186
  best_individual = tools.selBest(population, k=1)[0]
187
+
188
  for idx, emotion in enumerate(emotions.keys()):
189
+ if idx < len(emotions) - 1:
190
+ emotions[emotion]['percentage'] = best_individual[idx]
191
+ emotions[emotion]['intensity'] = best_individual[idx + len(emotions) - 1]
192
+ else:
193
+ emotions[emotion]['percentage'] = best_individual[-1]
194
+
195
+ # Initialize the pre-trained language model (BLOOM-1b7)
196
+ model_name = 'bigscience/bloom-1b7'
197
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
198
+ lm_model = AutoModelForCausalLM.from_pretrained(model_name)
199
+
200
+ def generate_text(prompt, max_length=150):
201
+ input_ids = tokenizer.encode(prompt, return_tensors='pt')
202
+ output = lm_model.generate(
203
+ input_ids,
204
+ max_length=max_length,
205
+ num_return_sequences=1,
206
+ no_repeat_ngram_size=2,
207
+ do_sample=True,
208
+ top_k=50,
209
+ top_p=0.95,
210
+ temperature=0.7
211
+ )
212
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
213
+ return generated_text
214
+
215
+ sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, tokenizer=tokenizer)
216
+
217
+ def get_sentiment(text):
218
+ result = sentiment_pipeline(text)[0]
219
+ return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
220
 
 
221
  def get_emotional_response(context):
 
222
  context = normalize_context(context)
 
 
223
  context_encoded = encoder.transform([[context]]).toarray()
224
+
225
+ # Advanced NN prediction
226
+ nn_output = model(torch.FloatTensor(context_encoded))
227
+ nn_prediction = nn_output.argmax(1).item()
228
+
229
+ # Ensemble predictions
230
+ rf_prediction = rf_model.predict(context_encoded)[0]
231
+ gb_prediction = gb_model.predict(context_encoded)[0]
232
+
233
+ # Weighted ensemble
234
+ ensemble_prediction = (0.4 * nn_prediction + 0.3 * rf_prediction + 0.3 * gb_prediction)
235
+ predicted_emotion = emotion_classes[int(round(ensemble_prediction))]
236
+
237
+ # Anomaly detection
238
+ anomaly_score = isolation_forest.decision_function(np.array([[nn_prediction]]))
239
+ is_anomaly = anomaly_score < 0
240
 
241
+ # Calculate emotion intensity based on model confidence
242
+ nn_proba = torch.softmax(nn_output, dim=1).max().item()
243
+ rf_proba = rf_model.predict_proba(context_encoded).max()
244
+ gb_proba = gb_model.predict_proba(context_encoded).max()
245
+ intensity = (nn_proba + rf_proba + gb_proba) / 3 * 10 # Scale to 0-10
246
 
247
+ update_emotion(predicted_emotion, 20, intensity)
248
  evolve_emotions()
249
 
 
250
  emotion_history.append(emotions.copy())
251
  save_historical_data(emotion_history)
252
 
253
+ response = f"Predicted Emotion: {predicted_emotion}\n"
254
+ response += f"Emotion Details: {emotions[predicted_emotion]}\n"
255
+ response += f"Anomaly Detected: {'Yes' if is_anomaly else 'No'}\n"
256
+ response += f"Emotion Intensity: {intensity:.2f}/10\n"
257
+ response += f"Current Emotional State: {json.dumps(emotions, indent=2)}"
258
+
259
+ return response
260
 
261
+ def process_input(input_text):
262
+ emotional_response = get_emotional_response(input_text)
263
+ sentiment = get_sentiment(input_text)
264
+ generated_text = generate_text(f"Based on the emotion analysis: {emotional_response}\nGenerate a response: {input_text}")
265
+
266
+ return f"{emotional_response}\n\nSentiment Analysis: {sentiment}\n\nGenerated Response: {generated_text}"
267
 
268
+ # Gradio Interface
269
+ iface = gr.Interface(
270
+ fn=process_input,
271
+ inputs="text",
272
+ outputs="text",
273
+ title="Advanced Emotion Analysis and Text Generation with BLOOM-1b7",
274
+ description="Enter a sentence for comprehensive emotion analysis, sentiment analysis, and context-aware text generation using advanced AI models."
275
+ )
276
 
277
+ if __name__ == "__main__":
278
+ iface.launch()