Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,16 +5,18 @@ import os
|
|
5 |
import json
|
6 |
import random
|
7 |
import gradio as gr
|
8 |
-
from sklearn.ensemble import IsolationForest
|
9 |
-
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.preprocessing import OneHotEncoder
|
11 |
from sklearn.neural_network import MLPClassifier
|
|
|
12 |
from deap import base, creator, tools, algorithms
|
13 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
import torch
|
15 |
-
import torch.
|
|
|
|
|
16 |
|
17 |
-
# Suppress specific warnings
|
18 |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
|
19 |
|
20 |
# Initialize Example Emotions Dataset
|
@@ -42,41 +44,82 @@ contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
|
|
42 |
emotions_target = df['emotion'].astype('category').cat.codes
|
43 |
emotion_classes = df['emotion'].astype('category').cat.categories
|
44 |
|
45 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Isolation Forest Anomaly Detection Model
|
51 |
-
historical_data = np.array([model.
|
52 |
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
|
53 |
isolation_forest.fit(historical_data)
|
54 |
|
55 |
-
# Emotional States
|
56 |
emotions = {
|
57 |
-
'joy': {'percentage': 10, 'motivation': 'positive'},
|
58 |
-
'pleasure': {'percentage': 10, 'motivation': 'selfish'},
|
59 |
-
'sadness': {'percentage': 10, 'motivation': 'negative'},
|
60 |
-
'grief': {'percentage': 10, 'motivation': 'negative'},
|
61 |
-
'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
|
62 |
-
'calmness': {'percentage': 10, 'motivation': 'neutral'},
|
63 |
-
'determination': {'percentage': 10, 'motivation': 'positive'},
|
64 |
-
'resentment': {'percentage': 10, 'motivation': 'negative'},
|
65 |
-
'glory': {'percentage': 10, 'motivation': 'positive'},
|
66 |
-
'motivation': {'percentage': 10, 'motivation': 'positive'},
|
67 |
-
'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
|
68 |
-
'fear': {'percentage': 10, 'motivation': 'defensive'},
|
69 |
-
'surprise': {'percentage': 10, 'motivation': 'unexpected'},
|
70 |
-
'anticipation': {'percentage': 10, 'motivation': 'predictive'},
|
71 |
-
'trust': {'percentage': 10, 'motivation': 'reliable'},
|
72 |
-
'disgust': {'percentage': 10, 'motivation': 'repulsive'},
|
73 |
-
'optimism': {'percentage': 10, 'motivation': 'hopeful'},
|
74 |
-
'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
|
75 |
-
'boredom': {'percentage': 10, 'motivation': 'indifferent'},
|
76 |
-
'envy': {'percentage': 10, 'motivation': 'jealous'}
|
77 |
}
|
78 |
|
79 |
-
# Adjust all emotions to a total of 200%
|
80 |
total_percentage = 200
|
81 |
default_percentage = total_percentage / len(emotions)
|
82 |
for emotion in emotions:
|
@@ -84,105 +127,152 @@ for emotion in emotions:
|
|
84 |
|
85 |
emotion_history_file = 'emotion_history.json'
|
86 |
|
87 |
-
# Load historical data from file if exists
|
88 |
def load_historical_data(file_path=emotion_history_file):
|
89 |
if os.path.exists(file_path):
|
90 |
with open(file_path, 'r') as file:
|
91 |
return json.load(file)
|
92 |
return []
|
93 |
|
94 |
-
# Save historical data to file
|
95 |
def save_historical_data(historical_data, file_path=emotion_history_file):
|
96 |
with open(file_path, 'w') as file:
|
97 |
json.dump(historical_data, file)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Function to update emotions
|
103 |
-
def update_emotion(emotion, percentage):
|
104 |
emotions['ideal_state']['percentage'] -= percentage
|
105 |
emotions[emotion]['percentage'] += percentage
|
|
|
106 |
|
107 |
-
# Ensure total percentage remains 200%
|
108 |
total_current = sum(e['percentage'] for e in emotions.values())
|
109 |
adjustment = total_percentage - total_current
|
110 |
emotions['ideal_state']['percentage'] += adjustment
|
111 |
|
112 |
-
# Function to normalize context
|
113 |
def normalize_context(context):
|
114 |
return context.lower().strip()
|
115 |
|
116 |
-
#
|
117 |
def evolve_emotions():
|
118 |
-
# Define the fitness function
|
119 |
def evaluate(individual):
|
120 |
-
ideal_state = individual[-1]
|
121 |
-
other_emotions = individual[:-1]
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
creator.create("
|
126 |
-
creator.create("Individual", list, fitness=creator.FitnessMin)
|
127 |
|
128 |
-
# Create individuals and population
|
129 |
toolbox = base.Toolbox()
|
130 |
-
toolbox.register("
|
131 |
-
toolbox.register("
|
132 |
-
toolbox.register("
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
|
136 |
-
# Register genetic operators
|
137 |
toolbox.register("evaluate", evaluate)
|
138 |
-
toolbox.register("mate", tools.
|
139 |
-
toolbox.register("mutate", tools.
|
140 |
-
toolbox.register("select", tools.
|
141 |
-
|
142 |
-
# Initialize the population
|
143 |
-
population = toolbox.population(n=10)
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
147 |
|
148 |
-
# Update the emotions with the best individual
|
149 |
best_individual = tools.selBest(population, k=1)[0]
|
|
|
150 |
for idx, emotion in enumerate(emotions.keys()):
|
151 |
-
emotions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
# Function to get emotional response
|
154 |
def get_emotional_response(context):
|
155 |
-
# Normalize context
|
156 |
context = normalize_context(context)
|
157 |
-
|
158 |
-
# Encode the context and predict the emotion using the neural network
|
159 |
context_encoded = encoder.transform([[context]]).toarray()
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
#
|
164 |
-
|
|
|
|
|
|
|
165 |
|
166 |
-
|
167 |
evolve_emotions()
|
168 |
|
169 |
-
# Save the updated emotion history
|
170 |
emotion_history.append(emotions.copy())
|
171 |
save_historical_data(emotion_history)
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
179 |
|
180 |
-
#
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
emotional_response = get_emotional_response(context_input)
|
188 |
-
print(emotional_response)
|
|
|
5 |
import json
|
6 |
import random
|
7 |
import gradio as gr
|
8 |
+
from sklearn.ensemble import IsolationForest, RandomForestClassifier, GradientBoostingClassifier
|
9 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
10 |
from sklearn.preprocessing import OneHotEncoder
|
11 |
from sklearn.neural_network import MLPClassifier
|
12 |
+
from sklearn.metrics import accuracy_score
|
13 |
from deap import base, creator, tools, algorithms
|
14 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
15 |
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.optim as optim
|
18 |
+
from torch.utils.data import DataLoader, TensorDataset
|
19 |
|
|
|
20 |
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
|
21 |
|
22 |
# Initialize Example Emotions Dataset
|
|
|
44 |
emotions_target = df['emotion'].astype('category').cat.codes
|
45 |
emotion_classes = df['emotion'].astype('category').cat.categories
|
46 |
|
47 |
+
# Advanced Neural Network with PyTorch
|
48 |
+
class AdvancedNN(nn.Module):
|
49 |
+
def __init__(self, input_size, hidden_size, num_classes):
|
50 |
+
super(AdvancedNN, self).__init__()
|
51 |
+
self.layer1 = nn.Linear(input_size, hidden_size)
|
52 |
+
self.layer2 = nn.Linear(hidden_size, hidden_size)
|
53 |
+
self.layer3 = nn.Linear(hidden_size, num_classes)
|
54 |
+
self.relu = nn.ReLU()
|
55 |
+
self.dropout = nn.Dropout(0.2)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.relu(self.layer1(x))
|
59 |
+
x = self.dropout(x)
|
60 |
+
x = self.relu(self.layer2(x))
|
61 |
+
x = self.dropout(x)
|
62 |
+
x = self.layer3(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
# Train Advanced Neural Network
|
66 |
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
67 |
+
input_size = X_train.shape[1]
|
68 |
+
hidden_size = 64
|
69 |
+
num_classes = len(emotion_classes)
|
70 |
+
|
71 |
+
model = AdvancedNN(input_size, hidden_size, num_classes)
|
72 |
+
criterion = nn.CrossEntropyLoss()
|
73 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
74 |
+
|
75 |
+
train_dataset = TensorDataset(torch.FloatTensor(X_train), torch.LongTensor(y_train))
|
76 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
77 |
+
|
78 |
+
num_epochs = 100
|
79 |
+
for epoch in range(num_epochs):
|
80 |
+
for batch_X, batch_y in train_loader:
|
81 |
+
outputs = model(batch_X)
|
82 |
+
loss = criterion(outputs, batch_y)
|
83 |
+
optimizer.zero_grad()
|
84 |
+
loss.backward()
|
85 |
+
optimizer.step()
|
86 |
+
|
87 |
+
# Ensemble with Random Forest and Gradient Boosting
|
88 |
+
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
89 |
+
gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
|
90 |
+
|
91 |
+
rf_model.fit(X_train, y_train)
|
92 |
+
gb_model.fit(X_train, y_train)
|
93 |
|
94 |
# Isolation Forest Anomaly Detection Model
|
95 |
+
historical_data = np.array([model(torch.FloatTensor(contexts_encoded)).argmax(1).numpy()]).T
|
96 |
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
|
97 |
isolation_forest.fit(historical_data)
|
98 |
|
99 |
+
# Enhanced Emotional States
|
100 |
emotions = {
|
101 |
+
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
102 |
+
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
|
103 |
+
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
104 |
+
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
105 |
+
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
|
106 |
+
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
|
107 |
+
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
108 |
+
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
|
109 |
+
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
110 |
+
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
|
111 |
+
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
|
112 |
+
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
|
113 |
+
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
|
114 |
+
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
|
115 |
+
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
|
116 |
+
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
|
117 |
+
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
|
118 |
+
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
|
119 |
+
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
|
120 |
+
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
|
121 |
}
|
122 |
|
|
|
123 |
total_percentage = 200
|
124 |
default_percentage = total_percentage / len(emotions)
|
125 |
for emotion in emotions:
|
|
|
127 |
|
128 |
emotion_history_file = 'emotion_history.json'
|
129 |
|
|
|
130 |
def load_historical_data(file_path=emotion_history_file):
|
131 |
if os.path.exists(file_path):
|
132 |
with open(file_path, 'r') as file:
|
133 |
return json.load(file)
|
134 |
return []
|
135 |
|
|
|
136 |
def save_historical_data(historical_data, file_path=emotion_history_file):
|
137 |
with open(file_path, 'w') as file:
|
138 |
json.dump(historical_data, file)
|
139 |
|
140 |
+
emotion_history = load_historical_data
|
141 |
+
def update_emotion(emotion, percentage, intensity):
|
|
|
|
|
|
|
142 |
emotions['ideal_state']['percentage'] -= percentage
|
143 |
emotions[emotion]['percentage'] += percentage
|
144 |
+
emotions[emotion]['intensity'] = intensity
|
145 |
|
|
|
146 |
total_current = sum(e['percentage'] for e in emotions.values())
|
147 |
adjustment = total_percentage - total_current
|
148 |
emotions['ideal_state']['percentage'] += adjustment
|
149 |
|
|
|
150 |
def normalize_context(context):
|
151 |
return context.lower().strip()
|
152 |
|
153 |
+
# Advanced Genetic Algorithm for Emotion Evolution
|
154 |
def evolve_emotions():
|
|
|
155 |
def evaluate(individual):
|
156 |
+
ideal_state = individual[-1]
|
157 |
+
other_emotions = individual[:-1]
|
158 |
+
intensities = individual[-21:-1]
|
159 |
+
return (abs(ideal_state - 100),
|
160 |
+
sum(other_emotions),
|
161 |
+
max(intensities) - min(intensities))
|
162 |
|
163 |
+
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -1.0, -1.0))
|
164 |
+
creator.create("Individual", list, fitness=creator.FitnessMulti)
|
|
|
165 |
|
|
|
166 |
toolbox = base.Toolbox()
|
167 |
+
toolbox.register("attr_float", random.uniform, 0, 20)
|
168 |
+
toolbox.register("attr_intensity", random.uniform, 0, 10)
|
169 |
+
toolbox.register("individual", tools.initCycle, creator.Individual,
|
170 |
+
(toolbox.attr_float,) * (len(emotions) - 1) +
|
171 |
+
(toolbox.attr_intensity,) * len(emotions) +
|
172 |
+
(lambda: random.uniform(80, 120),),
|
173 |
+
n=1)
|
174 |
+
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
175 |
|
|
|
176 |
toolbox.register("evaluate", evaluate)
|
177 |
+
toolbox.register("mate", tools.cxSimulatedBinaryBounded, low=0, up=120, eta=20.0)
|
178 |
+
toolbox.register("mutate", tools.mutPolynomialBounded, low=0, up=120, eta=20.0, indpb=0.1)
|
179 |
+
toolbox.register("select", tools.selNSGA2)
|
|
|
|
|
|
|
180 |
|
181 |
+
population = toolbox.population(n=100)
|
182 |
+
|
183 |
+
algorithms.eaMuPlusLambda(population, toolbox, mu=100, lambda_=100,
|
184 |
+
cxpb=0.7, mutpb=0.3, ngen=50, verbose=False)
|
185 |
|
|
|
186 |
best_individual = tools.selBest(population, k=1)[0]
|
187 |
+
|
188 |
for idx, emotion in enumerate(emotions.keys()):
|
189 |
+
if idx < len(emotions) - 1:
|
190 |
+
emotions[emotion]['percentage'] = best_individual[idx]
|
191 |
+
emotions[emotion]['intensity'] = best_individual[idx + len(emotions) - 1]
|
192 |
+
else:
|
193 |
+
emotions[emotion]['percentage'] = best_individual[-1]
|
194 |
+
|
195 |
+
# Initialize the pre-trained language model (BLOOM-1b7)
|
196 |
+
model_name = 'bigscience/bloom-1b7'
|
197 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
198 |
+
lm_model = AutoModelForCausalLM.from_pretrained(model_name)
|
199 |
+
|
200 |
+
def generate_text(prompt, max_length=150):
|
201 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
202 |
+
output = lm_model.generate(
|
203 |
+
input_ids,
|
204 |
+
max_length=max_length,
|
205 |
+
num_return_sequences=1,
|
206 |
+
no_repeat_ngram_size=2,
|
207 |
+
do_sample=True,
|
208 |
+
top_k=50,
|
209 |
+
top_p=0.95,
|
210 |
+
temperature=0.7
|
211 |
+
)
|
212 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
213 |
+
return generated_text
|
214 |
+
|
215 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=model_name, tokenizer=tokenizer)
|
216 |
+
|
217 |
+
def get_sentiment(text):
|
218 |
+
result = sentiment_pipeline(text)[0]
|
219 |
+
return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
|
220 |
|
|
|
221 |
def get_emotional_response(context):
|
|
|
222 |
context = normalize_context(context)
|
|
|
|
|
223 |
context_encoded = encoder.transform([[context]]).toarray()
|
224 |
+
|
225 |
+
# Advanced NN prediction
|
226 |
+
nn_output = model(torch.FloatTensor(context_encoded))
|
227 |
+
nn_prediction = nn_output.argmax(1).item()
|
228 |
+
|
229 |
+
# Ensemble predictions
|
230 |
+
rf_prediction = rf_model.predict(context_encoded)[0]
|
231 |
+
gb_prediction = gb_model.predict(context_encoded)[0]
|
232 |
+
|
233 |
+
# Weighted ensemble
|
234 |
+
ensemble_prediction = (0.4 * nn_prediction + 0.3 * rf_prediction + 0.3 * gb_prediction)
|
235 |
+
predicted_emotion = emotion_classes[int(round(ensemble_prediction))]
|
236 |
+
|
237 |
+
# Anomaly detection
|
238 |
+
anomaly_score = isolation_forest.decision_function(np.array([[nn_prediction]]))
|
239 |
+
is_anomaly = anomaly_score < 0
|
240 |
|
241 |
+
# Calculate emotion intensity based on model confidence
|
242 |
+
nn_proba = torch.softmax(nn_output, dim=1).max().item()
|
243 |
+
rf_proba = rf_model.predict_proba(context_encoded).max()
|
244 |
+
gb_proba = gb_model.predict_proba(context_encoded).max()
|
245 |
+
intensity = (nn_proba + rf_proba + gb_proba) / 3 * 10 # Scale to 0-10
|
246 |
|
247 |
+
update_emotion(predicted_emotion, 20, intensity)
|
248 |
evolve_emotions()
|
249 |
|
|
|
250 |
emotion_history.append(emotions.copy())
|
251 |
save_historical_data(emotion_history)
|
252 |
|
253 |
+
response = f"Predicted Emotion: {predicted_emotion}\n"
|
254 |
+
response += f"Emotion Details: {emotions[predicted_emotion]}\n"
|
255 |
+
response += f"Anomaly Detected: {'Yes' if is_anomaly else 'No'}\n"
|
256 |
+
response += f"Emotion Intensity: {intensity:.2f}/10\n"
|
257 |
+
response += f"Current Emotional State: {json.dumps(emotions, indent=2)}"
|
258 |
+
|
259 |
+
return response
|
260 |
|
261 |
+
def process_input(input_text):
|
262 |
+
emotional_response = get_emotional_response(input_text)
|
263 |
+
sentiment = get_sentiment(input_text)
|
264 |
+
generated_text = generate_text(f"Based on the emotion analysis: {emotional_response}\nGenerate a response: {input_text}")
|
265 |
+
|
266 |
+
return f"{emotional_response}\n\nSentiment Analysis: {sentiment}\n\nGenerated Response: {generated_text}"
|
267 |
|
268 |
+
# Gradio Interface
|
269 |
+
iface = gr.Interface(
|
270 |
+
fn=process_input,
|
271 |
+
inputs="text",
|
272 |
+
outputs="text",
|
273 |
+
title="Advanced Emotion Analysis and Text Generation with BLOOM-1b7",
|
274 |
+
description="Enter a sentence for comprehensive emotion analysis, sentiment analysis, and context-aware text generation using advanced AI models."
|
275 |
+
)
|
276 |
|
277 |
+
if __name__ == "__main__":
|
278 |
+
iface.launch()
|
|
|
|