File size: 9,422 Bytes
b71e3bf
 
 
56864f5
b71e3bf
 
56864f5
 
ba908ff
f5b3aed
177a610
56864f5
 
177a610
 
 
ba908ff
56864f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a25926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56864f5
 
177a610
56864f5
f5b3aed
56864f5
f5b3aed
 
b71e3bf
f5b3aed
 
3932506
f5b3aed
 
177a610
56864f5
ba908ff
 
 
 
 
 
56864f5
ba908ff
 
 
 
56864f5
 
ba908ff
 
56864f5
ba908ff
 
56864f5
ba908ff
56864f5
f5b3aed
177a610
56864f5
 
 
 
 
 
177a610
289ccd4
 
56864f5
 
289ccd4
 
 
 
 
 
 
56864f5
289ccd4
 
56864f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932506
56864f5
 
 
 
 
 
f5b3aed
56864f5
177a610
56864f5
 
 
 
3932506
56864f5
 
 
 
 
5ab26ec
d84bf23
289ccd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84bf23
289ccd4
 
 
 
 
 
 
 
56864f5
 
289ccd4
56864f5
6a25926
 
 
 
 
 
 
56864f5
6a25926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56864f5
6a25926
 
 
 
b71e3bf
 
6a25926
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import streamlit as st
import numpy as np
import torch
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
from huggingface_hub import HfApi
import plotly.graph_objects as go
import time
from datetime import datetime

# Cyberpunk and Loading Animation Styling
def setup_cyberpunk_style():
    st.markdown("""
        <style>
        @import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
        @import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
        
        .stApp {
            background: radial-gradient(circle, rgba(0, 0, 0, 0.95) 20%, rgba(0, 50, 80, 0.95) 90%);
            color: #00ff9d;
            font-family: 'Orbitron', sans-serif;
        }
        
        .main-title {
            text-align: center;
            font-size: 4em;
            color: #00ff9d;
            letter-spacing: 4px;
            animation: glow 2s ease-in-out infinite alternate;
        }
        
        @keyframes glow {
            from {text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d;}
            to {text-shadow: 0 0 15px #00b8ff, 0 0 20px #00b8ff;}
        }
        .stButton > button {
            font-family: 'Orbitron', sans-serif;
            background: linear-gradient(45deg, #00ff9d, #00b8ff);
            color: #000;
            font-size: 1.1em;
            padding: 10px 20px;
            border: none;
            border-radius: 8px;
            transition: all 0.3s ease;
        }
        
        .stButton > button:hover {
            transform: scale(1.1);
            box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
        }
        .progress-bar-container {
            background: rgba(0, 0, 0, 0.5);
            border-radius: 15px;
            overflow: hidden;
            width: 100%;
            height: 30px;
            position: relative;
            margin: 10px 0;
        }
        
        .progress-bar {
            height: 100%;
            width: 0%;
            background: linear-gradient(45deg, #00ff9d, #00b8ff);
            transition: width 0.5s ease;
        }
        
        .go-button {
            font-family: 'Orbitron', sans-serif;
            background: linear-gradient(45deg, #00ff9d, #00b8ff);
            color: #000;
            font-size: 1.1em;
            padding: 10px 20px;
            border: none;
            border-radius: 8px;
            transition: all 0.3s ease;
            cursor: pointer;
        }
        
        .go-button:hover {
            transform: scale(1.1);
            box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
        }
        
        .loading-animation {
            display: inline-block;
            width: 20px;
            height: 20px;
            border: 3px solid #00ff9d;
            border-radius: 50%;
            border-top-color: transparent;
            animation: spin 1s ease-in-out infinite;
        }
        
        @keyframes spin {
            to {transform: rotate(360deg);}
        }
        </style>
    """, unsafe_allow_html=True)

# Prepare Dataset Function with Padding Token Fix
def prepare_dataset(data, tokenizer, block_size=128):
    tokenizer.pad_token = tokenizer.eos_token
    def tokenize_function(examples):
        return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')

    raw_dataset = Dataset.from_dict({'text': data})
    tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
    tokenized_dataset = tokenized_dataset.map(lambda examples: {'labels': examples['input_ids']}, batched=True)
    tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
    return tokenized_dataset

# Training Dashboard Class with Enhanced Display
class TrainingDashboard:
    def __init__(self):
        self.metrics = {
            'current_loss': 0,
            'best_loss': float('inf'),
            'generation': 0,
            'individual': 0,
            'start_time': time.time(),
            'training_speed': 0
        }
        self.history = []

    def update(self, loss, generation, individual):
        self.metrics['current_loss'] = loss
        self.metrics['generation'] = generation
        self.metrics['individual'] = individual
        if loss < self.metrics['best_loss']:
            self.metrics['best_loss'] = loss
        
        elapsed_time = time.time() - self.metrics['start_time']
        self.metrics['training_speed'] = (generation * individual) / elapsed_time
        self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')})

# Define Model Initialization
def initialize_model(model_name="gpt2"):
    model = GPT2LMHeadModel.from_pretrained(model_name)
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)
    tokenizer.pad_token = tokenizer.eos_token
    return model, tokenizer

# Load Dataset Function with Uploaded File Option
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
    if data_source == "demo":
        data = ["Sample text data for model training. This can be replaced with actual data for better performance."]
    elif uploaded_file is not None:
        if uploaded_file.name.endswith(".txt"):
            data = [uploaded_file.read().decode("utf-8")]
        elif uploaded_file.name.endswith(".csv"):
            import pandas as pd
            df = pd.read_csv(uploaded_file)
            data = df[df.columns[0]].tolist()  # assuming first column is text data
    else:
        data = ["No file uploaded. Please upload a dataset."]
    
    dataset = prepare_dataset(data, tokenizer)
    return dataset

# Train Model Function with Customized Progress Bar
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4):
    training_args = TrainingArguments(
        output_dir="./results",
        overwrite_output_dir=True,
        num_train_epochs=epochs,
        per_device_train_batch_size=batch_size,
        save_steps=10_000,
        save_total_limit=2,
        logging_dir="./logs",
        logging_steps=100,
    )
    
    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
    )

    trainer.train()

# Main App Logic
def main():
    setup_cyberpunk_style()
    st.markdown('<h1 class="main-title">Cyberpunk Neural Training Hub</h1>', unsafe_allow_html=True)
    
    # Initialize model and tokenizer
    model, tokenizer = initialize_model()

    # Sidebar Configuration with Additional Options
    with st.sidebar:
        st.markdown("### Configuration Panel")
    
        # Hugging Face API Token Input
        hf_token = st.text_input("Enter your Hugging Face Token", type="password")
        if hf_token:
            api = HfApi()
            api.set_access_token(hf_token)
            st.success("Hugging Face token added successfully!")

        # Training Parameters
        training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
        batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
        model_choice = st.selectbox("Model Selection", ("gpt2", "distilgpt2", "gpt2-medium"))
        
        # Dataset Source Selection
        data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
        uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
        
        custom_learning_rate = st.slider("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6)

        # Advanced Settings Toggle
        advanced_toggle = st.checkbox("Advanced Training Settings")
        if advanced_toggle:
            warmup_steps = st.slider("Warmup Steps", min_value=0, max_value=500, value=100)
            weight_decay = st.slider("Weight Decay", min_value=0.0, max_value=0.1, step=0.01, value=0.01)
        else:
            warmup_steps = 100
            weight_decay = 0.01

    # Load Dataset
    train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)

    # Go Button to Start Training
    if st.button("Go"):
        progress_placeholder = st.empty()
        loading_animation = st.empty()
        st.markdown("### Model Training Progress")

        dashboard = TrainingDashboard()

        for epoch in range(training_epochs):
            loading_animation.markdown("""
                <div class="loading-animation"></div>
            """, unsafe_allow_html=True)
            
            train_model(model, train_dataset, tokenizer, epochs=1, batch_size=batch_size)
            
            # Update Progress Bar
            progress = (epoch + 1) / training_epochs * 100
            progress_placeholder.markdown(f"""
                <div class="progress-bar-container">
                    <div class="progress-bar" style="width: {progress}%;"></div>
                </div>
            """, unsafe_allow_html=True)
            
            dashboard.update(loss=0, generation=epoch + 1, individual=batch_size)
        
        loading_animation.empty()
        st.success("Training Complete!")
        st.write("Training Metrics:")
        st.write(dashboard.metrics)

if __name__ == "__main__":
    main()