Spaces:
Sleeping
Sleeping
File size: 9,422 Bytes
b71e3bf 56864f5 b71e3bf 56864f5 ba908ff f5b3aed 177a610 56864f5 177a610 ba908ff 56864f5 6a25926 56864f5 177a610 56864f5 f5b3aed 56864f5 f5b3aed b71e3bf f5b3aed 3932506 f5b3aed 177a610 56864f5 ba908ff 56864f5 ba908ff 56864f5 ba908ff 56864f5 ba908ff 56864f5 ba908ff 56864f5 f5b3aed 177a610 56864f5 177a610 289ccd4 56864f5 289ccd4 56864f5 289ccd4 56864f5 3932506 56864f5 f5b3aed 56864f5 177a610 56864f5 3932506 56864f5 5ab26ec d84bf23 289ccd4 d84bf23 289ccd4 56864f5 289ccd4 56864f5 6a25926 56864f5 6a25926 56864f5 6a25926 b71e3bf 6a25926 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import streamlit as st
import numpy as np
import torch
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
from huggingface_hub import HfApi
import plotly.graph_objects as go
import time
from datetime import datetime
# Cyberpunk and Loading Animation Styling
def setup_cyberpunk_style():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
.stApp {
background: radial-gradient(circle, rgba(0, 0, 0, 0.95) 20%, rgba(0, 50, 80, 0.95) 90%);
color: #00ff9d;
font-family: 'Orbitron', sans-serif;
}
.main-title {
text-align: center;
font-size: 4em;
color: #00ff9d;
letter-spacing: 4px;
animation: glow 2s ease-in-out infinite alternate;
}
@keyframes glow {
from {text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d;}
to {text-shadow: 0 0 15px #00b8ff, 0 0 20px #00b8ff;}
}
.stButton > button {
font-family: 'Orbitron', sans-serif;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: #000;
font-size: 1.1em;
padding: 10px 20px;
border: none;
border-radius: 8px;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: scale(1.1);
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
}
.progress-bar-container {
background: rgba(0, 0, 0, 0.5);
border-radius: 15px;
overflow: hidden;
width: 100%;
height: 30px;
position: relative;
margin: 10px 0;
}
.progress-bar {
height: 100%;
width: 0%;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
transition: width 0.5s ease;
}
.go-button {
font-family: 'Orbitron', sans-serif;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: #000;
font-size: 1.1em;
padding: 10px 20px;
border: none;
border-radius: 8px;
transition: all 0.3s ease;
cursor: pointer;
}
.go-button:hover {
transform: scale(1.1);
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
}
.loading-animation {
display: inline-block;
width: 20px;
height: 20px;
border: 3px solid #00ff9d;
border-radius: 50%;
border-top-color: transparent;
animation: spin 1s ease-in-out infinite;
}
@keyframes spin {
to {transform: rotate(360deg);}
}
</style>
""", unsafe_allow_html=True)
# Prepare Dataset Function with Padding Token Fix
def prepare_dataset(data, tokenizer, block_size=128):
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
raw_dataset = Dataset.from_dict({'text': data})
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
tokenized_dataset = tokenized_dataset.map(lambda examples: {'labels': examples['input_ids']}, batched=True)
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
return tokenized_dataset
# Training Dashboard Class with Enhanced Display
class TrainingDashboard:
def __init__(self):
self.metrics = {
'current_loss': 0,
'best_loss': float('inf'),
'generation': 0,
'individual': 0,
'start_time': time.time(),
'training_speed': 0
}
self.history = []
def update(self, loss, generation, individual):
self.metrics['current_loss'] = loss
self.metrics['generation'] = generation
self.metrics['individual'] = individual
if loss < self.metrics['best_loss']:
self.metrics['best_loss'] = loss
elapsed_time = time.time() - self.metrics['start_time']
self.metrics['training_speed'] = (generation * individual) / elapsed_time
self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')})
# Define Model Initialization
def initialize_model(model_name="gpt2"):
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
# Load Dataset Function with Uploaded File Option
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
if data_source == "demo":
data = ["Sample text data for model training. This can be replaced with actual data for better performance."]
elif uploaded_file is not None:
if uploaded_file.name.endswith(".txt"):
data = [uploaded_file.read().decode("utf-8")]
elif uploaded_file.name.endswith(".csv"):
import pandas as pd
df = pd.read_csv(uploaded_file)
data = df[df.columns[0]].tolist() # assuming first column is text data
else:
data = ["No file uploaded. Please upload a dataset."]
dataset = prepare_dataset(data, tokenizer)
return dataset
# Train Model Function with Customized Progress Bar
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4):
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
save_steps=10_000,
save_total_limit=2,
logging_dir="./logs",
logging_steps=100,
)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
trainer.train()
# Main App Logic
def main():
setup_cyberpunk_style()
st.markdown('<h1 class="main-title">Cyberpunk Neural Training Hub</h1>', unsafe_allow_html=True)
# Initialize model and tokenizer
model, tokenizer = initialize_model()
# Sidebar Configuration with Additional Options
with st.sidebar:
st.markdown("### Configuration Panel")
# Hugging Face API Token Input
hf_token = st.text_input("Enter your Hugging Face Token", type="password")
if hf_token:
api = HfApi()
api.set_access_token(hf_token)
st.success("Hugging Face token added successfully!")
# Training Parameters
training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
model_choice = st.selectbox("Model Selection", ("gpt2", "distilgpt2", "gpt2-medium"))
# Dataset Source Selection
data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
custom_learning_rate = st.slider("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6)
# Advanced Settings Toggle
advanced_toggle = st.checkbox("Advanced Training Settings")
if advanced_toggle:
warmup_steps = st.slider("Warmup Steps", min_value=0, max_value=500, value=100)
weight_decay = st.slider("Weight Decay", min_value=0.0, max_value=0.1, step=0.01, value=0.01)
else:
warmup_steps = 100
weight_decay = 0.01
# Load Dataset
train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)
# Go Button to Start Training
if st.button("Go"):
progress_placeholder = st.empty()
loading_animation = st.empty()
st.markdown("### Model Training Progress")
dashboard = TrainingDashboard()
for epoch in range(training_epochs):
loading_animation.markdown("""
<div class="loading-animation"></div>
""", unsafe_allow_html=True)
train_model(model, train_dataset, tokenizer, epochs=1, batch_size=batch_size)
# Update Progress Bar
progress = (epoch + 1) / training_epochs * 100
progress_placeholder.markdown(f"""
<div class="progress-bar-container">
<div class="progress-bar" style="width: {progress}%;"></div>
</div>
""", unsafe_allow_html=True)
dashboard.update(loss=0, generation=epoch + 1, individual=batch_size)
loading_animation.empty()
st.success("Training Complete!")
st.write("Training Metrics:")
st.write(dashboard.metrics)
if __name__ == "__main__":
main() |