File size: 14,184 Bytes
b71e3bf
 
 
56864f5
b1d82e7
9aef0f6
b1d82e7
b71e3bf
56864f5
 
ba908ff
f5b3aed
9aef0f6
 
b1d82e7
56864f5
 
177a610
 
9aef0f6
56864f5
 
177a610
56864f5
f5b3aed
56864f5
f5b3aed
 
b71e3bf
f5b3aed
 
3932506
f5b3aed
 
177a610
56864f5
 
 
 
 
 
177a610
289ccd4
 
56864f5
9aef0f6
 
 
 
 
 
289ccd4
 
 
 
9aef0f6
 
 
56864f5
289ccd4
 
56864f5
 
 
9aef0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932506
9aef0f6
 
 
 
f5b3aed
9aef0f6
 
 
 
 
 
 
 
 
 
 
 
 
177a610
9aef0f6
 
 
 
 
02c3e34
9aef0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c3e34
56864f5
 
 
02c3e34
3932506
56864f5
 
5ab26ec
d84bf23
289ccd4
 
 
 
 
 
9aef0f6
289ccd4
 
 
 
 
 
 
 
 
9aef0f6
 
289ccd4
 
 
 
 
 
 
 
9aef0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56864f5
 
289ccd4
56864f5
6a25926
 
 
9aef0f6
 
 
 
 
 
 
 
 
6a25926
9aef0f6
 
 
56864f5
9aef0f6
 
 
02c3e34
9aef0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71e3bf
 
6a25926
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import streamlit as st
import numpy as np
import torch
import random
from transformers import (
    GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
)
from datasets import Dataset
from huggingface_hub import HfApi
import plotly.graph_objects as go
import time
from datetime import datetime
from typing import Dict, List, Any
import pandas as pd  # Added pandas import

# Cyberpunk and Loading Animation Styling
def setup_cyberpunk_style():
    st.markdown("""
        <style>
        /* [Your existing CSS styles here] */
        </style>
    """, unsafe_allow_html=True)

# Prepare Dataset Function with Padding Token Fix
def prepare_dataset(data, tokenizer, block_size=128):
    tokenizer.pad_token = tokenizer.eos_token
    def tokenize_function(examples):
        return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')

    raw_dataset = Dataset.from_dict({'text': data})
    tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
    tokenized_dataset = tokenized_dataset.map(lambda examples: {'labels': examples['input_ids']}, batched=True)
    tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
    return tokenized_dataset

# Define Model Initialization
def initialize_model(model_name="gpt2"):
    model = GPT2LMHeadModel.from_pretrained(model_name)
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)
    tokenizer.pad_token = tokenizer.eos_token
    return model, tokenizer

# Load Dataset Function with Uploaded File Option
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
    if data_source == "demo":
        data = [
            "In the neon-lit streets of Neo-Tokyo, a lone hacker fights against the oppressive megacorporations.",
            "The rain falls in sheets, washing away the bloodstains from the alleyways.",
            "She plugs into the matrix, seeking answers to questions that have haunted her for years."
        ]
    elif data_source == "uploaded file" and uploaded_file is not None:
        if uploaded_file.name.endswith(".txt"):
            data = [uploaded_file.read().decode("utf-8")]
        elif uploaded_file.name.endswith(".csv"):
            df = pd.read_csv(uploaded_file)
            data = df[df.columns[0]].astype(str).tolist()  # Ensure all data is string
        else:
            data = ["Unsupported file format."]
    else:
        data = ["No file uploaded. Please upload a dataset."]
    
    dataset = prepare_dataset(data, tokenizer)
    return dataset

# Train Model Function
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4, use_ga=False, ga_params=None):
    if not use_ga:
        training_args = TrainingArguments(
            output_dir="./results",
            overwrite_output_dir=True,
            num_train_epochs=epochs,
            per_device_train_batch_size=batch_size,
            save_steps=10_000,
            save_total_limit=2,
            logging_dir="./logs",
            logging_steps=1,
            logging_strategy='steps',
            report_to=None,  # Disable default logging to WandB or other services
        )
        
        data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
        
        trainer = Trainer(
            model=model,
            args=training_args,
            data_collator=data_collator,
            train_dataset=train_dataset,
        )
        trainer.train()
        return trainer.state.log_history
    else:
        # GA training logic
        param_bounds = {
            'learning_rate': (1e-5, 5e-5),
            'epochs': (1, ga_params['max_epochs']),
            'batch_size': [2, 4, 8, 16]
        }

        population = create_ga_population(ga_params['population_size'], param_bounds)
        best_individual = None
        best_fitness = float('inf')
        all_losses = []

        for generation in range(ga_params['num_generations']):
            fitnesses = []
            for idx, individual in enumerate(population):
                model_copy = GPT2LMHeadModel.from_pretrained('gpt2')
                training_args = TrainingArguments(
                    output_dir=f"./results/ga_{generation}_{idx}",
                    num_train_epochs=individual['epochs'],
                    per_device_train_batch_size=individual['batch_size'],
                    learning_rate=individual['learning_rate'],
                    logging_steps=1,
                    logging_strategy='steps',
                    report_to=None,  # Disable default logging to WandB or other services
                )

                trainer = Trainer(
                    model=model_copy,
                    args=training_args,
                    train_dataset=train_dataset,
                )

                # Capture the training result
                train_result = trainer.train()
                
                # Safely retrieve the training loss
                fitness = train_result.metrics.get('train_loss', None)
                if fitness is None:
                    # If 'train_loss' is not available, try to compute it from log history
                    if 'loss' in trainer.state.log_history[-1]:
                        fitness = trainer.state.log_history[-1]['loss']
                    else:
                        fitness = float('inf')  # Assign a large number if loss is not available

                fitnesses.append(fitness)
                all_losses.extend(trainer.state.log_history)

                if fitness < best_fitness:
                    best_fitness = fitness
                    best_individual = individual
                    model.load_state_dict(model_copy.state_dict())

                del model_copy
                torch.cuda.empty_cache()

            # GA operations
            parents = select_ga_parents(population, fitnesses, ga_params['num_parents'])
            offspring_size = ga_params['population_size'] - ga_params['num_parents']
            offspring = ga_crossover(parents, offspring_size)
            offspring = ga_mutation(offspring, param_bounds, ga_params['mutation_rate'])
            population = parents + offspring

        return all_losses

# GA-related functions
def create_ga_population(size: int, param_bounds: Dict[str, Any]) -> List[Dict[str, Any]]:
    """Create initial population for genetic algorithm"""
    population = []
    for _ in range(size):
        individual = {
            'learning_rate': random.uniform(*param_bounds['learning_rate']),
            'epochs': random.randint(*param_bounds['epochs']),
            'batch_size': random.choice(param_bounds['batch_size']),
        }
        population.append(individual)
    return population

def select_ga_parents(population: List[Dict[str, Any]], fitnesses: List[float], num_parents: int) -> List[Dict[str, Any]]:
    """Select best performing individuals as parents"""
    parents = [population[i] for i in np.argsort(fitnesses)[:num_parents]]
    return parents

def ga_crossover(parents: List[Dict[str, Any]], offspring_size: int) -> List[Dict[str, Any]]:
    """Create offspring through crossover of parents"""
    offspring = []
    for _ in range(offspring_size):
        parent1 = random.choice(parents)
        parent2 = random.choice(parents)
        child = {
            'learning_rate': random.choice([parent1['learning_rate'], parent2['learning_rate']]),
            'epochs': random.choice([parent1['epochs'], parent2['epochs']]),
            'batch_size': random.choice([parent1['batch_size'], parent2['batch_size']]),
        }
        offspring.append(child)
    return offspring

def ga_mutation(offspring: List[Dict[str, Any]], param_bounds: Dict[str, Any], mutation_rate: float = 0.1) -> List[Dict[str, Any]]:
    """Apply random mutations to offspring"""
    for individual in offspring:
        if random.random() < mutation_rate:
            individual['learning_rate'] = random.uniform(*param_bounds['learning_rate'])
        if random.random() < mutation_rate:
            individual['epochs'] = random.randint(*param_bounds['epochs'])
        if random.random() < mutation_rate:
            individual['batch_size'] = random.choice(param_bounds['batch_size'])
    return offspring

# Main App Logic
def main():
    setup_cyberpunk_style()
    st.markdown('<h1 class="main-title">Neural Training Hub</h1>', unsafe_allow_html=True)
    
    # Sidebar Configuration with Additional Options
    with st.sidebar:
        st.markdown("### Configuration Panel")
    
        # Hugging Face API Token Input
        hf_token = st.text_input("Enter your Hugging Face Token", type="password")
        if hf_token:
            api = HfApi()
            api.set_access_token(hf_token)
            st.success("Hugging Face token added successfully!")
    
        # Training Parameters
        training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
        batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
        model_choice = st.selectbox("Model Selection", ("gpt2", "distilgpt2", "gpt2-medium"))
        
        # Dataset Source Selection
        data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
        uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
        
        custom_learning_rate = st.number_input("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6, format="%.6f")
    
        # Advanced Settings Toggle
        advanced_toggle = st.checkbox("Advanced Training Settings")
        if advanced_toggle:
            warmup_steps = st.slider("Warmup Steps", min_value=0, max_value=500, value=100)
            weight_decay = st.slider("Weight Decay", min_value=0.0, max_value=0.1, step=0.01, value=0.01)
        else:
            warmup_steps = 100
            weight_decay = 0.01
    
        # Add training method selection
        training_method = st.selectbox("Training Method", ("Standard", "Genetic Algorithm"))
        
        if training_method == "Genetic Algorithm":
            st.markdown("### GA Parameters")
            ga_params = {
                'population_size': st.slider("Population Size", min_value=4, max_value=10, value=6),
                'num_generations': st.slider("Number of Generations", min_value=1, max_value=5, value=3),
                'num_parents': st.slider("Number of Parents", min_value=2, max_value=4, value=2),
                'mutation_rate': st.slider("Mutation Rate", min_value=0.0, max_value=1.0, value=0.1),
                'max_epochs': training_epochs
            }
        else:
            ga_params = None

    # Initialize model and tokenizer
    if 'model' not in st.session_state:
        model, tokenizer = initialize_model(model_name=model_choice)
        st.session_state['model'] = model
        st.session_state['tokenizer'] = tokenizer
        st.session_state['model_name'] = model_choice
    else:
        if st.session_state.get('model_name') != model_choice:
            model, tokenizer = initialize_model(model_name=model_choice)
            st.session_state['model'] = model
            st.session_state['tokenizer'] = tokenizer
            st.session_state['model_name'] = model_choice
        else:
            model = st.session_state['model']
            tokenizer = st.session_state['tokenizer']

    # Load Dataset
    train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)

    # Go Button to Start Training
    if st.button("Go"):
        st.markdown("### Model Training Progress")
        progress_bar = st.progress(0)
        status_text = st.empty()
        status_text.text("Training in progress...")

        # Train the model
        if training_method == "Standard":
            logs = train_model(model, train_dataset, tokenizer, training_epochs, batch_size)
        else:
            logs = train_model(model, train_dataset, tokenizer, training_epochs, batch_size, use_ga=True, ga_params=ga_params)

        # Update progress bar to 100%
        progress_bar.progress(100)
        status_text.text("Training complete!")

        # Store the model and logs in st.session_state
        st.session_state['model'] = model
        st.session_state['logs'] = logs

    # Plot the losses if available
    if 'logs' in st.session_state:
        logs = st.session_state['logs']
        losses = [log['loss'] for log in logs if 'loss' in log]
        steps = list(range(len(losses)))
        if losses:
            # Plot the losses
            fig = go.Figure()
            fig.add_trace(go.Scatter(x=steps, y=losses, mode='lines+markers', name='Training Loss', line=dict(color='#00ff9d')))
            fig.update_layout(
                title="Training Progress",
                xaxis_title="Training Steps",
                yaxis_title="Loss",
                template="plotly_dark",
                plot_bgcolor='rgba(0,0,0,0)',
                paper_bgcolor='rgba(0,0,0,0)',
                font=dict(color='#00ff9d')
            )
            st.plotly_chart(fig, use_container_width=True)
        else:
            st.write("No loss data available to plot.")
    else:
        st.write("Train the model to see the loss plot.")

    # After training, you can use the model for inference
    st.markdown("### Model Inference")
    with st.form("inference_form"):
        user_input = st.text_input("Enter prompt for the model:")
        submitted = st.form_submit_button("Generate")
        if submitted:
            if 'model' in st.session_state:
                model = st.session_state['model']
                tokenizer = st.session_state['tokenizer']
                inputs = tokenizer(user_input, return_tensors="pt")
                outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1)
                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
                st.write("Model output:", response)
            else:
                st.write("Please train the model first.")

if __name__ == "__main__":
    main()