Spaces:
Sleeping
Sleeping
File size: 14,184 Bytes
b71e3bf 56864f5 b1d82e7 9aef0f6 b1d82e7 b71e3bf 56864f5 ba908ff f5b3aed 9aef0f6 b1d82e7 56864f5 177a610 9aef0f6 56864f5 177a610 56864f5 f5b3aed 56864f5 f5b3aed b71e3bf f5b3aed 3932506 f5b3aed 177a610 56864f5 177a610 289ccd4 56864f5 9aef0f6 289ccd4 9aef0f6 56864f5 289ccd4 56864f5 9aef0f6 3932506 9aef0f6 f5b3aed 9aef0f6 177a610 9aef0f6 02c3e34 9aef0f6 02c3e34 56864f5 02c3e34 3932506 56864f5 5ab26ec d84bf23 289ccd4 9aef0f6 289ccd4 9aef0f6 289ccd4 9aef0f6 56864f5 289ccd4 56864f5 6a25926 9aef0f6 6a25926 9aef0f6 56864f5 9aef0f6 02c3e34 9aef0f6 b71e3bf 6a25926 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import streamlit as st
import numpy as np
import torch
import random
from transformers import (
GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
)
from datasets import Dataset
from huggingface_hub import HfApi
import plotly.graph_objects as go
import time
from datetime import datetime
from typing import Dict, List, Any
import pandas as pd # Added pandas import
# Cyberpunk and Loading Animation Styling
def setup_cyberpunk_style():
st.markdown("""
<style>
/* [Your existing CSS styles here] */
</style>
""", unsafe_allow_html=True)
# Prepare Dataset Function with Padding Token Fix
def prepare_dataset(data, tokenizer, block_size=128):
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
raw_dataset = Dataset.from_dict({'text': data})
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
tokenized_dataset = tokenized_dataset.map(lambda examples: {'labels': examples['input_ids']}, batched=True)
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
return tokenized_dataset
# Define Model Initialization
def initialize_model(model_name="gpt2"):
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
# Load Dataset Function with Uploaded File Option
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
if data_source == "demo":
data = [
"In the neon-lit streets of Neo-Tokyo, a lone hacker fights against the oppressive megacorporations.",
"The rain falls in sheets, washing away the bloodstains from the alleyways.",
"She plugs into the matrix, seeking answers to questions that have haunted her for years."
]
elif data_source == "uploaded file" and uploaded_file is not None:
if uploaded_file.name.endswith(".txt"):
data = [uploaded_file.read().decode("utf-8")]
elif uploaded_file.name.endswith(".csv"):
df = pd.read_csv(uploaded_file)
data = df[df.columns[0]].astype(str).tolist() # Ensure all data is string
else:
data = ["Unsupported file format."]
else:
data = ["No file uploaded. Please upload a dataset."]
dataset = prepare_dataset(data, tokenizer)
return dataset
# Train Model Function
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4, use_ga=False, ga_params=None):
if not use_ga:
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
save_steps=10_000,
save_total_limit=2,
logging_dir="./logs",
logging_steps=1,
logging_strategy='steps',
report_to=None, # Disable default logging to WandB or other services
)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
trainer.train()
return trainer.state.log_history
else:
# GA training logic
param_bounds = {
'learning_rate': (1e-5, 5e-5),
'epochs': (1, ga_params['max_epochs']),
'batch_size': [2, 4, 8, 16]
}
population = create_ga_population(ga_params['population_size'], param_bounds)
best_individual = None
best_fitness = float('inf')
all_losses = []
for generation in range(ga_params['num_generations']):
fitnesses = []
for idx, individual in enumerate(population):
model_copy = GPT2LMHeadModel.from_pretrained('gpt2')
training_args = TrainingArguments(
output_dir=f"./results/ga_{generation}_{idx}",
num_train_epochs=individual['epochs'],
per_device_train_batch_size=individual['batch_size'],
learning_rate=individual['learning_rate'],
logging_steps=1,
logging_strategy='steps',
report_to=None, # Disable default logging to WandB or other services
)
trainer = Trainer(
model=model_copy,
args=training_args,
train_dataset=train_dataset,
)
# Capture the training result
train_result = trainer.train()
# Safely retrieve the training loss
fitness = train_result.metrics.get('train_loss', None)
if fitness is None:
# If 'train_loss' is not available, try to compute it from log history
if 'loss' in trainer.state.log_history[-1]:
fitness = trainer.state.log_history[-1]['loss']
else:
fitness = float('inf') # Assign a large number if loss is not available
fitnesses.append(fitness)
all_losses.extend(trainer.state.log_history)
if fitness < best_fitness:
best_fitness = fitness
best_individual = individual
model.load_state_dict(model_copy.state_dict())
del model_copy
torch.cuda.empty_cache()
# GA operations
parents = select_ga_parents(population, fitnesses, ga_params['num_parents'])
offspring_size = ga_params['population_size'] - ga_params['num_parents']
offspring = ga_crossover(parents, offspring_size)
offspring = ga_mutation(offspring, param_bounds, ga_params['mutation_rate'])
population = parents + offspring
return all_losses
# GA-related functions
def create_ga_population(size: int, param_bounds: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Create initial population for genetic algorithm"""
population = []
for _ in range(size):
individual = {
'learning_rate': random.uniform(*param_bounds['learning_rate']),
'epochs': random.randint(*param_bounds['epochs']),
'batch_size': random.choice(param_bounds['batch_size']),
}
population.append(individual)
return population
def select_ga_parents(population: List[Dict[str, Any]], fitnesses: List[float], num_parents: int) -> List[Dict[str, Any]]:
"""Select best performing individuals as parents"""
parents = [population[i] for i in np.argsort(fitnesses)[:num_parents]]
return parents
def ga_crossover(parents: List[Dict[str, Any]], offspring_size: int) -> List[Dict[str, Any]]:
"""Create offspring through crossover of parents"""
offspring = []
for _ in range(offspring_size):
parent1 = random.choice(parents)
parent2 = random.choice(parents)
child = {
'learning_rate': random.choice([parent1['learning_rate'], parent2['learning_rate']]),
'epochs': random.choice([parent1['epochs'], parent2['epochs']]),
'batch_size': random.choice([parent1['batch_size'], parent2['batch_size']]),
}
offspring.append(child)
return offspring
def ga_mutation(offspring: List[Dict[str, Any]], param_bounds: Dict[str, Any], mutation_rate: float = 0.1) -> List[Dict[str, Any]]:
"""Apply random mutations to offspring"""
for individual in offspring:
if random.random() < mutation_rate:
individual['learning_rate'] = random.uniform(*param_bounds['learning_rate'])
if random.random() < mutation_rate:
individual['epochs'] = random.randint(*param_bounds['epochs'])
if random.random() < mutation_rate:
individual['batch_size'] = random.choice(param_bounds['batch_size'])
return offspring
# Main App Logic
def main():
setup_cyberpunk_style()
st.markdown('<h1 class="main-title">Neural Training Hub</h1>', unsafe_allow_html=True)
# Sidebar Configuration with Additional Options
with st.sidebar:
st.markdown("### Configuration Panel")
# Hugging Face API Token Input
hf_token = st.text_input("Enter your Hugging Face Token", type="password")
if hf_token:
api = HfApi()
api.set_access_token(hf_token)
st.success("Hugging Face token added successfully!")
# Training Parameters
training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
model_choice = st.selectbox("Model Selection", ("gpt2", "distilgpt2", "gpt2-medium"))
# Dataset Source Selection
data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
custom_learning_rate = st.number_input("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6, format="%.6f")
# Advanced Settings Toggle
advanced_toggle = st.checkbox("Advanced Training Settings")
if advanced_toggle:
warmup_steps = st.slider("Warmup Steps", min_value=0, max_value=500, value=100)
weight_decay = st.slider("Weight Decay", min_value=0.0, max_value=0.1, step=0.01, value=0.01)
else:
warmup_steps = 100
weight_decay = 0.01
# Add training method selection
training_method = st.selectbox("Training Method", ("Standard", "Genetic Algorithm"))
if training_method == "Genetic Algorithm":
st.markdown("### GA Parameters")
ga_params = {
'population_size': st.slider("Population Size", min_value=4, max_value=10, value=6),
'num_generations': st.slider("Number of Generations", min_value=1, max_value=5, value=3),
'num_parents': st.slider("Number of Parents", min_value=2, max_value=4, value=2),
'mutation_rate': st.slider("Mutation Rate", min_value=0.0, max_value=1.0, value=0.1),
'max_epochs': training_epochs
}
else:
ga_params = None
# Initialize model and tokenizer
if 'model' not in st.session_state:
model, tokenizer = initialize_model(model_name=model_choice)
st.session_state['model'] = model
st.session_state['tokenizer'] = tokenizer
st.session_state['model_name'] = model_choice
else:
if st.session_state.get('model_name') != model_choice:
model, tokenizer = initialize_model(model_name=model_choice)
st.session_state['model'] = model
st.session_state['tokenizer'] = tokenizer
st.session_state['model_name'] = model_choice
else:
model = st.session_state['model']
tokenizer = st.session_state['tokenizer']
# Load Dataset
train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)
# Go Button to Start Training
if st.button("Go"):
st.markdown("### Model Training Progress")
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("Training in progress...")
# Train the model
if training_method == "Standard":
logs = train_model(model, train_dataset, tokenizer, training_epochs, batch_size)
else:
logs = train_model(model, train_dataset, tokenizer, training_epochs, batch_size, use_ga=True, ga_params=ga_params)
# Update progress bar to 100%
progress_bar.progress(100)
status_text.text("Training complete!")
# Store the model and logs in st.session_state
st.session_state['model'] = model
st.session_state['logs'] = logs
# Plot the losses if available
if 'logs' in st.session_state:
logs = st.session_state['logs']
losses = [log['loss'] for log in logs if 'loss' in log]
steps = list(range(len(losses)))
if losses:
# Plot the losses
fig = go.Figure()
fig.add_trace(go.Scatter(x=steps, y=losses, mode='lines+markers', name='Training Loss', line=dict(color='#00ff9d')))
fig.update_layout(
title="Training Progress",
xaxis_title="Training Steps",
yaxis_title="Loss",
template="plotly_dark",
plot_bgcolor='rgba(0,0,0,0)',
paper_bgcolor='rgba(0,0,0,0)',
font=dict(color='#00ff9d')
)
st.plotly_chart(fig, use_container_width=True)
else:
st.write("No loss data available to plot.")
else:
st.write("Train the model to see the loss plot.")
# After training, you can use the model for inference
st.markdown("### Model Inference")
with st.form("inference_form"):
user_input = st.text_input("Enter prompt for the model:")
submitted = st.form_submit_button("Generate")
if submitted:
if 'model' in st.session_state:
model = st.session_state['model']
tokenizer = st.session_state['tokenizer']
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write("Model output:", response)
else:
st.write("Please train the model first.")
if __name__ == "__main__":
main() |