E.L.N / app.py
Sephfox's picture
Update app.py
177a610 verified
raw
history blame
11.3 kB
import streamlit as st
import numpy as np
import random
import torch
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
from huggingface_hub import HfApi
import os
import traceback
from contextlib import contextmanager
# Error Handling Context Manager
@contextmanager
def error_handling(operation_name):
try:
yield
except Exception as e:
error_msg = f"Error during {operation_name}: {str(e)}\n{traceback.format_exc()}"
st.error(error_msg)
with open("error_log.txt", "a") as f:
f.write(f"\n{error_msg}")
# Cyberpunk Styling
def setup_cyberpunk_style():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
.stApp {
background: linear-gradient(45deg, #000428, #004e92);
}
.main-title {
font-family: 'Orbitron', sans-serif;
color: #00ff9d;
text-align: center;
text-shadow: 0 0 10px #00ff9d;
padding: 20px;
font-size: 2.5em;
margin-bottom: 30px;
}
.stButton>button {
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: black;
font-family: 'Orbitron', sans-serif;
border: none;
padding: 10px 20px;
border-radius: 5px;
text-transform: uppercase;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton>button:hover {
transform: scale(1.05);
box-shadow: 0 0 15px #00ff9d;
}
.metric-container {
background: rgba(0, 0, 0, 0.5);
border: 2px solid #00ff9d;
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.status-text {
color: #00ff9d;
font-family: 'Orbitron', sans-serif;
font-size: 1.2em;
}
.sidebar .stSelectbox, .sidebar .stSlider {
background-color: rgba(0, 0, 0, 0.3);
border-radius: 5px;
padding: 10px;
margin: 5px 0;
}
</style>
""", unsafe_allow_html=True)
# Your existing functions with error handling
def generate_demo_data(num_samples=60):
with error_handling("demo data generation"):
# Your existing generate_demo_data code
subjects = [
'Artificial intelligence', 'Climate change', 'Renewable energy',
'Space exploration', 'Quantum computing', 'Genetic engineering',
'Blockchain technology', 'Virtual reality', 'Cybersecurity',
'Biotechnology', 'Nanotechnology', 'Astrophysics'
]
verbs = [
'is transforming', 'is influencing', 'is revolutionizing',
'is challenging', 'is advancing', 'is reshaping', 'is impacting',
'is enhancing', 'is disrupting', 'is redefining'
]
objects = [
'modern science', 'global economies', 'healthcare systems',
'communication methods', 'educational approaches',
'environmental policies', 'social interactions', 'the job market',
'data security', 'the entertainment industry'
]
data = []
for i in range(num_samples):
subject = random.choice(subjects)
verb = random.choice(verbs)
obj = random.choice(objects)
sentence = f"{subject} {verb} {obj}."
data.append(sentence)
return data
def upload_to_huggingface(model_path, token, repo_name):
with error_handling("HuggingFace upload"):
api = HfApi()
api.create_repo(repo_name, token=token, private=True)
api.upload_folder(
folder_path=model_path,
repo_id=repo_name,
token=token
)
return True
def fitness_function(individual, train_dataset, model, tokenizer):
with error_handling("fitness evaluation"):
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=individual['epochs'],
per_device_train_batch_size=individual['batch_size'],
learning_rate=individual['learning_rate'],
logging_steps=10,
save_steps=10,
save_total_limit=2,
report_to='none',
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=None,
)
trainer.train()
logs = [log for log in trainer.state.log_history if 'loss' in log]
return logs[-1]['loss'] if logs else float('inf')
def main():
setup_cyberpunk_style()
st.markdown('<h1 class="main-title">Neural Evolution GPT-2 Training Hub</h1>', unsafe_allow_html=True)
# Sidebar Configuration
with st.sidebar:
st.markdown("### 🌐 Configuration")
hf_token = st.text_input("πŸ”‘ HuggingFace Token", type="password")
repo_name = st.text_input("πŸ“ Repository Name", "my-gpt2-model")
data_source = st.selectbox(
'πŸ“Š Data Source',
('DEMO', 'Upload Text File')
)
st.markdown("### βš™οΈ Evolution Parameters")
population_size = st.slider("Population Size", 4, 20, 6)
num_generations = st.slider("Generations", 1, 10, 3)
num_parents = st.slider("Parents", 2, population_size, 2)
mutation_rate = st.slider("Mutation Rate", 0.0, 1.0, 0.1)
# Hyperparameter bounds
param_bounds = {
'learning_rate': (1e-5, 5e-5),
'epochs': (1, 3),
'batch_size': [2, 4, 8]
}
# Main Content Area
with error_handling("main application flow"):
if data_source == 'DEMO':
st.info("πŸ€– Using demo data...")
data = generate_demo_data()
else:
uploaded_file = st.file_uploader("πŸ“‚ Upload Training Data", type="txt")
if uploaded_file:
data = load_data(uploaded_file)
else:
st.warning("⚠️ Please upload a text file")
st.stop()
# Model Setup
with st.spinner("πŸ”§ Loading GPT-2..."):
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Dataset Preparation
with st.spinner("πŸ“Š Preparing dataset..."):
train_dataset = prepare_dataset(data, tokenizer)
if st.button("πŸš€ Start Training", key="start_training"):
progress_bar = st.progress(0)
status_text = st.empty()
# Metrics Display
col1, col2, col3 = st.columns(3)
with col1:
metrics_loss = st.empty()
with col2:
metrics_generation = st.empty()
with col3:
metrics_status = st.empty()
try:
# Initialize GA
population = create_population(population_size, param_bounds)
best_individual = None
best_fitness = float('inf')
fitness_history = []
total_evaluations = num_generations * len(population)
current_evaluation = 0
for generation in range(num_generations):
metrics_generation.markdown(f"""
<div class="metric-container">
<p class="status-text">Generation: {generation + 1}/{num_generations}</p>
</div>
""", unsafe_allow_html=True)
fitnesses = []
for idx, individual in enumerate(population):
status_text.text(f"🧬 Evaluating individual {idx+1}/{len(population)} in generation {generation+1}")
# Clone model for each individual
model_clone = GPT2LMHeadModel.from_pretrained('gpt2')
model_clone.to(device)
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
fitnesses.append(fitness)
if fitness < best_fitness:
best_fitness = fitness
best_individual = individual.copy()
metrics_loss.markdown(f"""
<div class="metric-container">
<p class="status-text">Best Loss: {best_fitness:.4f}</p>
</div>
""", unsafe_allow_html=True)
current_evaluation += 1
progress_bar.progress(current_evaluation / total_evaluations)
# Evolution steps
parents = select_mating_pool(population, fitnesses, num_parents)
offspring_size = population_size - num_parents
offspring = crossover(parents, offspring_size)
offspring = mutation(offspring, param_bounds, mutation_rate)
population = parents + offspring
fitness_history.append(min(fitnesses))
# Training Complete
st.success("πŸŽ‰ Training completed!")
st.write("Best Hyperparameters:", best_individual)
st.write("Best Fitness (Loss):", best_fitness)
# Plot fitness history
st.line_chart(fitness_history)
# Save and Upload Model
if st.button("πŸ’Ύ Save & Upload Model"):
with st.spinner("Saving model..."):
model.save_pretrained('./fine_tuned_model')
tokenizer.save_pretrained('./fine_tuned_model')
if hf_token:
if upload_to_huggingface('./fine_tuned_model', hf_token, repo_name):
st.success(f"βœ… Model uploaded to HuggingFace: {repo_name}")
else:
st.error("❌ Failed to upload model")
else:
st.warning("⚠️ No HuggingFace token provided. Model saved locally only.")
except Exception as e:
st.error(f"❌ Training error: {str(e)}")
with open("error_log.txt", "a") as f:
f.write(f"\nTraining error: {str(e)}\n{traceback.format_exc()}")
if __name__ == "__main__":
main()