E.L.N / app.py
Sephfox's picture
Update app.py
6a25926 verified
raw
history blame
9.42 kB
import streamlit as st
import numpy as np
import torch
import random
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
from huggingface_hub import HfApi
import plotly.graph_objects as go
import time
from datetime import datetime
# Cyberpunk and Loading Animation Styling
def setup_cyberpunk_style():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Share+Tech+Mono&display=swap');
.stApp {
background: radial-gradient(circle, rgba(0, 0, 0, 0.95) 20%, rgba(0, 50, 80, 0.95) 90%);
color: #00ff9d;
font-family: 'Orbitron', sans-serif;
}
.main-title {
text-align: center;
font-size: 4em;
color: #00ff9d;
letter-spacing: 4px;
animation: glow 2s ease-in-out infinite alternate;
}
@keyframes glow {
from {text-shadow: 0 0 5px #00ff9d, 0 0 10px #00ff9d;}
to {text-shadow: 0 0 15px #00b8ff, 0 0 20px #00b8ff;}
}
.stButton > button {
font-family: 'Orbitron', sans-serif;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: #000;
font-size: 1.1em;
padding: 10px 20px;
border: none;
border-radius: 8px;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: scale(1.1);
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
}
.progress-bar-container {
background: rgba(0, 0, 0, 0.5);
border-radius: 15px;
overflow: hidden;
width: 100%;
height: 30px;
position: relative;
margin: 10px 0;
}
.progress-bar {
height: 100%;
width: 0%;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
transition: width 0.5s ease;
}
.go-button {
font-family: 'Orbitron', sans-serif;
background: linear-gradient(45deg, #00ff9d, #00b8ff);
color: #000;
font-size: 1.1em;
padding: 10px 20px;
border: none;
border-radius: 8px;
transition: all 0.3s ease;
cursor: pointer;
}
.go-button:hover {
transform: scale(1.1);
box-shadow: 0 0 20px rgba(0, 255, 157, 0.5);
}
.loading-animation {
display: inline-block;
width: 20px;
height: 20px;
border: 3px solid #00ff9d;
border-radius: 50%;
border-top-color: transparent;
animation: spin 1s ease-in-out infinite;
}
@keyframes spin {
to {transform: rotate(360deg);}
}
</style>
""", unsafe_allow_html=True)
# Prepare Dataset Function with Padding Token Fix
def prepare_dataset(data, tokenizer, block_size=128):
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
raw_dataset = Dataset.from_dict({'text': data})
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
tokenized_dataset = tokenized_dataset.map(lambda examples: {'labels': examples['input_ids']}, batched=True)
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
return tokenized_dataset
# Training Dashboard Class with Enhanced Display
class TrainingDashboard:
def __init__(self):
self.metrics = {
'current_loss': 0,
'best_loss': float('inf'),
'generation': 0,
'individual': 0,
'start_time': time.time(),
'training_speed': 0
}
self.history = []
def update(self, loss, generation, individual):
self.metrics['current_loss'] = loss
self.metrics['generation'] = generation
self.metrics['individual'] = individual
if loss < self.metrics['best_loss']:
self.metrics['best_loss'] = loss
elapsed_time = time.time() - self.metrics['start_time']
self.metrics['training_speed'] = (generation * individual) / elapsed_time
self.history.append({'loss': loss, 'timestamp': datetime.now().strftime('%H:%M:%S')})
# Define Model Initialization
def initialize_model(model_name="gpt2"):
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
# Load Dataset Function with Uploaded File Option
def load_dataset(data_source="demo", tokenizer=None, uploaded_file=None):
if data_source == "demo":
data = ["Sample text data for model training. This can be replaced with actual data for better performance."]
elif uploaded_file is not None:
if uploaded_file.name.endswith(".txt"):
data = [uploaded_file.read().decode("utf-8")]
elif uploaded_file.name.endswith(".csv"):
import pandas as pd
df = pd.read_csv(uploaded_file)
data = df[df.columns[0]].tolist() # assuming first column is text data
else:
data = ["No file uploaded. Please upload a dataset."]
dataset = prepare_dataset(data, tokenizer)
return dataset
# Train Model Function with Customized Progress Bar
def train_model(model, train_dataset, tokenizer, epochs=3, batch_size=4):
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=epochs,
per_device_train_batch_size=batch_size,
save_steps=10_000,
save_total_limit=2,
logging_dir="./logs",
logging_steps=100,
)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
)
trainer.train()
# Main App Logic
def main():
setup_cyberpunk_style()
st.markdown('<h1 class="main-title">Cyberpunk Neural Training Hub</h1>', unsafe_allow_html=True)
# Initialize model and tokenizer
model, tokenizer = initialize_model()
# Sidebar Configuration with Additional Options
with st.sidebar:
st.markdown("### Configuration Panel")
# Hugging Face API Token Input
hf_token = st.text_input("Enter your Hugging Face Token", type="password")
if hf_token:
api = HfApi()
api.set_access_token(hf_token)
st.success("Hugging Face token added successfully!")
# Training Parameters
training_epochs = st.slider("Training Epochs", min_value=1, max_value=5, value=3)
batch_size = st.slider("Batch Size", min_value=2, max_value=8, value=4)
model_choice = st.selectbox("Model Selection", ("gpt2", "distilgpt2", "gpt2-medium"))
# Dataset Source Selection
data_source = st.selectbox("Data Source", ("demo", "uploaded file"))
uploaded_file = st.file_uploader("Upload a text file", type=["txt", "csv"]) if data_source == "uploaded file" else None
custom_learning_rate = st.slider("Learning Rate", min_value=1e-6, max_value=5e-4, value=3e-5, step=1e-6)
# Advanced Settings Toggle
advanced_toggle = st.checkbox("Advanced Training Settings")
if advanced_toggle:
warmup_steps = st.slider("Warmup Steps", min_value=0, max_value=500, value=100)
weight_decay = st.slider("Weight Decay", min_value=0.0, max_value=0.1, step=0.01, value=0.01)
else:
warmup_steps = 100
weight_decay = 0.01
# Load Dataset
train_dataset = load_dataset(data_source, tokenizer, uploaded_file=uploaded_file)
# Go Button to Start Training
if st.button("Go"):
progress_placeholder = st.empty()
loading_animation = st.empty()
st.markdown("### Model Training Progress")
dashboard = TrainingDashboard()
for epoch in range(training_epochs):
loading_animation.markdown("""
<div class="loading-animation"></div>
""", unsafe_allow_html=True)
train_model(model, train_dataset, tokenizer, epochs=1, batch_size=batch_size)
# Update Progress Bar
progress = (epoch + 1) / training_epochs * 100
progress_placeholder.markdown(f"""
<div class="progress-bar-container">
<div class="progress-bar" style="width: {progress}%;"></div>
</div>
""", unsafe_allow_html=True)
dashboard.update(loss=0, generation=epoch + 1, individual=batch_size)
loading_animation.empty()
st.success("Training Complete!")
st.write("Training Metrics:")
st.write(dashboard.metrics)
if __name__ == "__main__":
main()