E.L.N / app.py
diabolic6045's picture
Upload 2 files
23d3c60 verified
raw
history blame
9.13 kB
import streamlit as st
import numpy as np
import random
import torch
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import Dataset
import os
# Set random seeds for reproducibility
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
def generate_demo_data(num_samples=60):
# Generate meaningful sentences on various topics
subjects = [
'Artificial intelligence', 'Climate change', 'Renewable energy',
'Space exploration', 'Quantum computing', 'Genetic engineering',
'Blockchain technology', 'Virtual reality', 'Cybersecurity',
'Biotechnology', 'Nanotechnology', 'Astrophysics'
]
verbs = [
'is transforming', 'is influencing', 'is revolutionizing',
'is challenging', 'is advancing', 'is reshaping', 'is impacting',
'is enhancing', 'is disrupting', 'is redefining'
]
objects = [
'modern science', 'global economies', 'healthcare systems',
'communication methods', 'educational approaches',
'environmental policies', 'social interactions', 'the job market',
'data security', 'the entertainment industry'
]
data = []
for i in range(num_samples):
subject = random.choice(subjects)
verb = random.choice(verbs)
obj = random.choice(objects)
sentence = f"{subject} {verb} {obj}."
data.append(sentence)
return data
def load_data(uploaded_file):
# Load user-uploaded text file
data = uploaded_file.read().decode("utf-8")
data = data.splitlines()
return data
def prepare_dataset(data, tokenizer, block_size=128):
# Tokenize the texts
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
raw_dataset = Dataset.from_dict({'text': data})
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
# Create labels for language modeling
tokenized_dataset = tokenized_dataset.map(
lambda examples: {'labels': examples['input_ids']},
batched=True
)
# Set the format for PyTorch
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
return tokenized_dataset
def fitness_function(individual, train_dataset, model, tokenizer):
# Define the training arguments
training_args = TrainingArguments(
output_dir='./results',
overwrite_output_dir=True,
num_train_epochs=individual['epochs'],
per_device_train_batch_size=individual['batch_size'],
learning_rate=individual['learning_rate'],
logging_steps=10,
save_steps=10,
save_total_limit=2,
report_to='none', # Disable logging to Wandb or other services
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer, mlm=False
)
# Train the model
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=None,
)
trainer.train()
# For simplicity, use final training loss as fitness score
logs = [log for log in trainer.state.log_history if 'loss' in log]
if logs:
loss = logs[-1]['loss']
else:
loss = float('inf')
return loss
# Genetic Algorithm Functions
def create_population(size, param_bounds):
population = []
for _ in range(size):
individual = {
'learning_rate': random.uniform(*param_bounds['learning_rate']),
'epochs': random.randint(*param_bounds['epochs']),
'batch_size': random.choice(param_bounds['batch_size']),
}
population.append(individual)
return population
def select_mating_pool(population, fitnesses, num_parents):
parents = [population[i] for i in np.argsort(fitnesses)[:num_parents]]
return parents
def crossover(parents, offspring_size):
offspring = []
for _ in range(offspring_size):
parent1 = random.choice(parents)
parent2 = random.choice(parents)
child = {
'learning_rate': random.choice([parent1['learning_rate'], parent2['learning_rate']]),
'epochs': random.choice([parent1['epochs'], parent2['epochs']]),
'batch_size': random.choice([parent1['batch_size'], parent2['batch_size']]),
}
offspring.append(child)
return offspring
def mutation(offspring, param_bounds, mutation_rate=0.1):
for individual in offspring:
if random.random() < mutation_rate:
individual['learning_rate'] = random.uniform(*param_bounds['learning_rate'])
if random.random() < mutation_rate:
individual['epochs'] = random.randint(*param_bounds['epochs'])
if random.random() < mutation_rate:
individual['batch_size'] = random.choice(param_bounds['batch_size'])
return offspring
# Streamlit App
def main():
st.title("GPT-2 Fine-Tuning with Genetic Algorithm")
option = st.sidebar.selectbox(
'Choose Data Source',
('DEMO', 'Upload Text File')
)
if option == 'DEMO':
st.write("Using DEMO data...")
data = generate_demo_data()
else:
st.write("Upload a text file for fine-tuning.")
uploaded_file = st.file_uploader("Choose a text file", type="txt")
if uploaded_file is not None:
data = load_data(uploaded_file)
else:
st.warning("Please upload a text file.")
st.stop()
# Load tokenizer and model
st.write("Loading GPT-2 tokenizer and model...")
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
model.to('cuda' if torch.cuda.is_available() else 'cpu')
# Set the pad token
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Prepare dataset
st.write("Preparing dataset...")
train_dataset = prepare_dataset(data, tokenizer)
# GA Parameters
st.sidebar.subheader("Genetic Algorithm Parameters")
population_size = st.sidebar.number_input("Population Size", 4, 20, 6)
num_generations = st.sidebar.number_input("Number of Generations", 1, 10, 3)
num_parents = st.sidebar.number_input("Number of Parents", 2, population_size, 2)
mutation_rate = st.sidebar.slider("Mutation Rate", 0.0, 1.0, 0.1)
# Hyperparameter bounds
param_bounds = {
'learning_rate': (1e-5, 5e-5),
'epochs': (1, 3),
'batch_size': [2, 4, 8]
}
if st.button("Start Training"):
st.write("Initializing Genetic Algorithm...")
population = create_population(population_size, param_bounds)
best_individual = None
best_fitness = float('inf')
fitness_history = []
progress_bar = st.progress(0)
status_text = st.empty()
total_evaluations = num_generations * len(population)
current_evaluation = 0
for generation in range(num_generations):
st.write(f"Generation {generation+1}/{num_generations}")
fitnesses = []
for idx, individual in enumerate(population):
status_text.text(f"Evaluating individual {idx+1}/{len(population)} in generation {generation+1}")
# Clone the model to avoid reusing the same model
model_clone = GPT2LMHeadModel.from_pretrained('gpt2')
model_clone.to('cuda' if torch.cuda.is_available() else 'cpu')
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
fitnesses.append(fitness)
if fitness < best_fitness:
best_fitness = fitness
best_individual = individual
current_evaluation += 1
progress_bar.progress(current_evaluation / total_evaluations)
fitness_history.append(min(fitnesses))
parents = select_mating_pool(population, fitnesses, num_parents)
offspring_size = population_size - num_parents
offspring = crossover(parents, offspring_size)
offspring = mutation(offspring, param_bounds, mutation_rate)
population = parents + offspring
st.write("Training completed!")
st.write(f"Best Hyperparameters: {best_individual}")
st.write(f"Best Fitness (Loss): {best_fitness}")
# Plot fitness history
st.line_chart(fitness_history)
# Save the best model
if st.button("Save Model"):
model_clone.save_pretrained('./fine_tuned_model')
tokenizer.save_pretrained('./fine_tuned_model')
st.write("Model saved successfully!")
if __name__ == "__main__":
main()