Neurasense / app.py
Sephfox's picture
Update app.py
c190cf0 verified
raw
history blame
14.3 kB
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
import plotly.graph_objects as go
import json
from datetime import datetime
import os
# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
# Custom CSS for a futuristic look
st.markdown("""
<style>
body {
color: #E0E0E0;
background-color: #0E1117;
}
.stApp {
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
}
.stButton>button {
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stSlider>div>div>div>div {
background-color: #00FFFF;
}
.stTextArea, .stNumberInput, .stSelectbox {
background-color: #1A1F2C;
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
box-shadow: 0 0 10px #00FFFF;
}
</style>
""", unsafe_allow_html=True)
# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
# Set up DialoGPT model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
return tokenizer, model
tokenizer, model = load_model()
# Advanced Sensor Classes
class QuantumSensor:
@staticmethod
def measure(x, y, sensitivity):
return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
class NanoThermalSensor:
@staticmethod
def measure(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
class AdaptiveTextureSensor:
textures = [
"nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
"graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
]
@staticmethod
def measure(x, y):
return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
class EMFieldSensor:
@staticmethod
def measure(x, y, sensitivity):
return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
class NeuralNetworkSimulator:
@staticmethod
def process(inputs):
weights = np.random.rand(len(inputs))
return np.dot(inputs, weights) / np.sum(weights)
# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
for y in range(height):
for x in range(width):
base_sensitivities = np.random.rand(12) * 0.5 + 0.5
# Enhance certain areas
if 250 < x < 350 and 50 < y < 150: # Head
base_sensitivities *= 1.5
elif 275 < x < 325 and 80 < y < 120: # Eyes
base_sensitivities[0] *= 2 # More sensitive to pain
elif 290 < x < 310 and 100 < y < 120: # Nose
base_sensitivities[4] *= 2 # More sensitive to texture
elif 280 < x < 320 and 120 < y < 140: # Mouth
base_sensitivities[1] *= 2 # More sensitive to pleasure
elif 250 < x < 350 and 250 < y < 550: # Torso
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
elif 200 < x < 400 and 600 < y < 800: # Legs
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
base_sensitivities *= 2 # Highly sensitive overall
elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
base_sensitivities[6] *= 2 # Very ticklish
sensation_map[y, x] = base_sensitivities
return sensation_map
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
# Create 3D humanoid avatar
def create_3d_avatar():
# Head
head_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 20 + 290
head_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 40 + 50
head_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 20 + 120
# Torso
torso_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 40 + 270
torso_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 150 + 250
torso_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 30 + 90
# Arms
arm_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 20 + 200
arm_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 150 + 250
arm_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 20 + 90
# Legs
leg_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 40 + 280
leg_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 200 + 600
leg_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 40 + 60
# Combine all body parts
x = np.concatenate([head_x, torso_x, arm_x, arm_x, leg_x, leg_x])
y = np.concatenate([head_y, torso_y, arm_y, arm_y, leg_y, leg_y])
z = np.concatenate([head_z, torso_z, arm_z, arm_z, leg_z, leg_z])
return go.Mesh3d(x=x, y=y, z=z, color='cyan', opacity=0.5)
# Enhanced Autonomy Class
class EnhancedAutonomy:
def __init__(self):
self.mood = 0.5
self.energy = 0.8
self.curiosity = 0.7
self.memory = []
def update_state(self, sensory_input):
self.mood = max(0, min(1, self.mood - sensory_input['pain'] * 0.1 + sensory_input['pleasure'] * 0.1))
self.energy = max(0, min(1, self.energy - sensory_input['intensity'] * 0.05))
if len(self.memory) == 0 or sensory_input not in self.memory:
self.curiosity = min(1, self.curiosity + 0.1)
else:
self.curiosity = max(0, self.curiosity - 0.05)
self.memory.append(sensory_input)
if len(self.memory) > 10:
self.memory.pop(0)
def decide_action(self):
if self.energy < 0.2:
return "Rest to regain energy"
elif self.curiosity > 0.8:
return "Explore new sensations"
elif self.mood < 0.3:
return "Seek positive interactions"
else:
return "Continue current activity"
# Function to save interactions
def save_interaction(interaction_data):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"interaction_{timestamp}.json"
with open(filename, "w") as f:
json.dump(interaction_data, f, indent=4)
return filename
# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
# Create two columns
col1, col2 = st.columns([2, 1])
# 3D Avatar display with touch interface
with col1:
st.subheader("3D Humanoid Avatar Interface")
# Create 3D avatar
avatar_3d = create_3d_avatar()
# Add 3D controls
rotation_x = st.slider("Rotate X", -180, 180, 0)
rotation_y = st.slider("Rotate Y", -180, 180, 0)
rotation_z = st.slider("Rotate Z", -180, 180, 0)
# Create 3D plot
fig = go.Figure(data=[avatar_3d])
fig.update_layout(scene=dict(xaxis_title="X", yaxis_title="Y", zaxis_title="Z"))
fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)))
fig.update_layout(scene=dict(xaxis=dict(range=[-400, 400]),
yaxis=dict(range=[-400, 400]),
zaxis=dict(range=[-200, 200])))
# Apply rotations
fig.update_layout(scene=dict(camera=dict(eye=dict(x=np.cos(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
y=np.sin(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
z=np.sin(np.radians(rotation_x))))))
st.plotly_chart(fig, use_container_width=True)
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0)),
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
# Toggle quantum feature
use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
# Toggle synesthesia
use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
# Initialize EnhancedAutonomy
if 'autonomy' not in st.session_state:
st.session_state.autonomy = EnhancedAutonomy()
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x = last_touch["left"]
touch_y = last_touch["top"]
touch_z = 0 # Assuming the touch is on the surface of the avatar
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
if use_quantum:
quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
else:
quantum_state = "N/A"
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
# Proprioception (sense of body position)
proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2, touch_z]) / (AVATAR_WIDTH/2)
# Synesthesia (mixing of senses)
if use_synesthesia:
synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
else:
synesthesia = "N/A"
# Neural network simulation
neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
neural_response = NeuralNetworkSimulator.process(neural_inputs)
# Create a futuristic data display
data_display = f"""
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Pressure : {measured_pressure:.2f} β”‚
β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
β”‚ Texture : {measured_texture} β”‚
β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
β”‚ Quantum State: {quantum_state:.2f} β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Pain Level : {pain_level:.2f} β”‚
β”‚ Pleasure : {pleasure_level:.2f} β”‚
β”‚ Tickle : {tickle_level:.2f} β”‚
β”‚ Itch : {itch_level:.2f} β”‚
β”‚ Proprioception: {proprioception:.2f} β”‚
β”‚ Synesthesia : {synesthesia} β”‚
β”‚ Neural Response: {neural_response:.2f} β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
"""
st.code(data_display, language="")
# Save interaction data
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
interaction_data = {
"touch_x": touch_x,
"touch_y": touch_y,
"touch_z": touch_z,
"touch_duration": touch_duration,
"touch_pressure": touch_pressure,
"measured_pressure": measured_pressure,
"measured_temp": measured_temp,
"measured_texture": measured_texture,
"measured_em": measured_em,
"quantum_state": quantum_state,
"pain_level": pain_level,
"pleasure_level": pleasure_level,
"tickle_level": tickle_level,
"itch_level": itch_level,
"proprioception": proprioception,
"synesthesia": synesthesia,
"neural_response": neural_response
}
filename = save_interaction(interaction_data)
st.write(f"Interaction data saved to: {filename}")
else:
st.write("No touch interaction detected.")
else:
st.write("No touch interaction detected.")