Spaces:
Sleeping
Sleeping
File size: 14,327 Bytes
0611560 c5987cc 58b97f2 b91d93b a750190 9aeacca b91d93b a8b2fd4 7eb3c25 7c1395e a8b2fd4 01df617 a8b2fd4 0611560 6e1639c a8b2fd4 0611560 9aeacca d9be852 9aeacca 9782585 a750190 9782585 d9be852 9782585 a750190 9782585 d9be852 9782585 a750190 9782585 d9be852 9782585 a750190 9782585 50eabc7 a8b2fd4 9782585 a8b2fd4 9782585 d9be852 a750190 60e6faa 9782585 60e6faa 9782585 a8b2fd4 9782585 a8b2fd4 9782585 a8b2fd4 9782585 a8b2fd4 4f53727 60e6faa 9aeacca 0611560 8cb6cb7 7eb3c25 8cb6cb7 7eb3c25 4f53727 7eb3c25 4f53727 7eb3c25 d9be852 7c1395e 6e1639c a8b2fd4 9aeacca b91d93b 7eb3c25 b91d93b 7eb3c25 b91d93b 7eb3c25 c190cf0 7eb3c25 f3de863 7eb3c25 a8b2fd4 7eb3c25 a8b2fd4 b91d93b a8b2fd4 4f53727 b91d93b a8b2fd4 4f53727 b91d93b a8b2fd4 a750190 01df617 9782585 7eb3c25 f3de863 c190cf0 f3de863 a8b2fd4 f3de863 9782585 f3de863 a8b2fd4 9782585 c190cf0 9782585 a8b2fd4 f3de863 c190cf0 f3de863 c190cf0 f3de863 cf355c3 c190cf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import io
import base64
from streamlit_drawable_canvas import st_canvas
import plotly.graph_objects as go
import json
from datetime import datetime
import os
# Set page config for a futuristic look
st.set_page_config(page_title="NeuraSense AI", page_icon="π§ ", layout="wide")
# Custom CSS for a futuristic look
st.markdown("""
<style>
body {
color: #E0E0E0;
background-color: #0E1117;
}
.stApp {
background-image: linear-gradient(135deg, #0E1117 0%, #1A1F2C 100%);
}
.stButton>button {
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stSlider>div>div>div>div {
background-color: #00FFFF;
}
.stTextArea, .stNumberInput, .stSelectbox {
background-color: #1A1F2C;
color: #00FFFF;
border-color: #00FFFF;
border-radius: 20px;
}
.stTextArea:focus, .stNumberInput:focus, .stSelectbox:focus {
box-shadow: 0 0 10px #00FFFF;
}
</style>
""", unsafe_allow_html=True)
# Constants
AVATAR_WIDTH, AVATAR_HEIGHT = 600, 800
# Set up DialoGPT model
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
return tokenizer, model
tokenizer, model = load_model()
# Advanced Sensor Classes
class QuantumSensor:
@staticmethod
def measure(x, y, sensitivity):
return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
class NanoThermalSensor:
@staticmethod
def measure(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
class AdaptiveTextureSensor:
textures = [
"nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
"graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
]
@staticmethod
def measure(x, y):
return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
class EMFieldSensor:
@staticmethod
def measure(x, y, sensitivity):
return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
class NeuralNetworkSimulator:
@staticmethod
def process(inputs):
weights = np.random.rand(len(inputs))
return np.dot(inputs, weights) / np.sum(weights)
# Create more detailed sensation map for the avatar
def create_sensation_map(width, height):
sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
for y in range(height):
for x in range(width):
base_sensitivities = np.random.rand(12) * 0.5 + 0.5
# Enhance certain areas
if 250 < x < 350 and 50 < y < 150: # Head
base_sensitivities *= 1.5
elif 275 < x < 325 and 80 < y < 120: # Eyes
base_sensitivities[0] *= 2 # More sensitive to pain
elif 290 < x < 310 and 100 < y < 120: # Nose
base_sensitivities[4] *= 2 # More sensitive to texture
elif 280 < x < 320 and 120 < y < 140: # Mouth
base_sensitivities[1] *= 2 # More sensitive to pleasure
elif 250 < x < 350 and 250 < y < 550: # Torso
base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
elif 200 < x < 400 and 600 < y < 800: # Legs
base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
base_sensitivities *= 2 # Highly sensitive overall
elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
base_sensitivities[6] *= 2 # Very ticklish
sensation_map[y, x] = base_sensitivities
return sensation_map
avatar_sensation_map = create_sensation_map(AVATAR_WIDTH, AVATAR_HEIGHT)
# Create 3D humanoid avatar
def create_3d_avatar():
# Head
head_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 20 + 290
head_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 40 + 50
head_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 20 + 120
# Torso
torso_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 40 + 270
torso_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 150 + 250
torso_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 30 + 90
# Arms
arm_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 20 + 200
arm_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 150 + 250
arm_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 20 + 90
# Legs
leg_x = np.array([0, 0, 1, 1, 0, 0, 1, 1]) * 40 + 280
leg_y = np.array([0, 1, 1, 0, 0, 1, 1, 0]) * 200 + 600
leg_z = np.array([0, 0, 0, 0, 1, 1, 1, 1]) * 40 + 60
# Combine all body parts
x = np.concatenate([head_x, torso_x, arm_x, arm_x, leg_x, leg_x])
y = np.concatenate([head_y, torso_y, arm_y, arm_y, leg_y, leg_y])
z = np.concatenate([head_z, torso_z, arm_z, arm_z, leg_z, leg_z])
return go.Mesh3d(x=x, y=y, z=z, color='cyan', opacity=0.5)
# Enhanced Autonomy Class
class EnhancedAutonomy:
def __init__(self):
self.mood = 0.5
self.energy = 0.8
self.curiosity = 0.7
self.memory = []
def update_state(self, sensory_input):
self.mood = max(0, min(1, self.mood - sensory_input['pain'] * 0.1 + sensory_input['pleasure'] * 0.1))
self.energy = max(0, min(1, self.energy - sensory_input['intensity'] * 0.05))
if len(self.memory) == 0 or sensory_input not in self.memory:
self.curiosity = min(1, self.curiosity + 0.1)
else:
self.curiosity = max(0, self.curiosity - 0.05)
self.memory.append(sensory_input)
if len(self.memory) > 10:
self.memory.pop(0)
def decide_action(self):
if self.energy < 0.2:
return "Rest to regain energy"
elif self.curiosity > 0.8:
return "Explore new sensations"
elif self.mood < 0.3:
return "Seek positive interactions"
else:
return "Continue current activity"
# Function to save interactions
def save_interaction(interaction_data):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"interaction_{timestamp}.json"
with open(filename, "w") as f:
json.dump(interaction_data, f, indent=4)
return filename
# Streamlit app
st.title("NeuraSense AI: Advanced Humanoid Techno-Sensory Simulation")
# Create two columns
col1, col2 = st.columns([2, 1])
# 3D Avatar display with touch interface
with col1:
st.subheader("3D Humanoid Avatar Interface")
# Create 3D avatar
avatar_3d = create_3d_avatar()
# Add 3D controls
rotation_x = st.slider("Rotate X", -180, 180, 0)
rotation_y = st.slider("Rotate Y", -180, 180, 0)
rotation_z = st.slider("Rotate Z", -180, 180, 0)
# Create 3D plot
fig = go.Figure(data=[avatar_3d])
fig.update_layout(scene=dict(xaxis_title="X", yaxis_title="Y", zaxis_title="Z"))
fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)))
fig.update_layout(scene=dict(xaxis=dict(range=[-400, 400]),
yaxis=dict(range=[-400, 400]),
zaxis=dict(range=[-200, 200])))
# Apply rotations
fig.update_layout(scene=dict(camera=dict(eye=dict(x=np.cos(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
y=np.sin(np.radians(rotation_y)) * np.cos(np.radians(rotation_x)),
z=np.sin(np.radians(rotation_x))))))
st.plotly_chart(fig, use_container_width=True)
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0)),
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
# Toggle quantum feature
use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
# Toggle synesthesia
use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
# Initialize EnhancedAutonomy
if 'autonomy' not in st.session_state:
st.session_state.autonomy = EnhancedAutonomy()
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x = last_touch["left"]
touch_y = last_touch["top"]
touch_z = 0 # Assuming the touch is on the surface of the avatar
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
if use_quantum:
quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
else:
quantum_state = "N/A"
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
# Proprioception (sense of body position)
proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2, touch_z]) / (AVATAR_WIDTH/2)
# Synesthesia (mixing of senses)
if use_synesthesia:
synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
else:
synesthesia = "N/A"
# Neural network simulation
neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
neural_response = NeuralNetworkSimulator.process(neural_inputs)
# Create a futuristic data display
data_display = f"""
```
βββββββββββββββββββββββββββββββββββββββββββββββ
β Pressure : {measured_pressure:.2f} β
β Temperature : {measured_temp:.2f}Β°C β
β Texture : {measured_texture} β
β EM Field : {measured_em:.2f} ΞΌT β
β Quantum State: {quantum_state:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β Pain Level : {pain_level:.2f} β
β Pleasure : {pleasure_level:.2f} β
β Tickle : {tickle_level:.2f} β
β Itch : {itch_level:.2f} β
β Proprioception: {proprioception:.2f} β
β Synesthesia : {synesthesia} β
β Neural Response: {neural_response:.2f} β
βββββββββββββββββββββββββββββββββββββββββββββββ
"""
st.code(data_display, language="")
# Save interaction data
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
interaction_data = {
"touch_x": touch_x,
"touch_y": touch_y,
"touch_z": touch_z,
"touch_duration": touch_duration,
"touch_pressure": touch_pressure,
"measured_pressure": measured_pressure,
"measured_temp": measured_temp,
"measured_texture": measured_texture,
"measured_em": measured_em,
"quantum_state": quantum_state,
"pain_level": pain_level,
"pleasure_level": pleasure_level,
"tickle_level": tickle_level,
"itch_level": itch_level,
"proprioception": proprioception,
"synesthesia": synesthesia,
"neural_response": neural_response
}
filename = save_interaction(interaction_data)
st.write(f"Interaction data saved to: {filename}")
else:
st.write("No touch interaction detected.")
else:
st.write("No touch interaction detected.") |