File size: 8,211 Bytes
22b66c4 55aad04 22b66c4 55aad04 22b66c4 55aad04 22b66c4 55aad04 22b66c4 55aad04 f259ff8 22b66c4 f259ff8 22b66c4 c508214 22b66c4 c508214 22b66c4 c508214 22b66c4 c508214 22b66c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import random
import numpy as np
import streamlit as st
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import time
class Organelle:
def __init__(self, type):
self.type = type # e.g., "nucleus", "mitochondria", "chloroplast"
class Cell:
def __init__(self, x, y, cell_type="prokaryote"):
self.x = x
self.y = y
self.energy = 100
self.cell_type = cell_type
self.organelles = []
self.size = 1
self.color = "blue"
self.division_threshold = 150
if cell_type == "prokaryote":
self.color = "lightblue"
elif cell_type == "early_eukaryote":
self.organelles.append(Organelle("nucleus"))
self.color = "green"
self.size = 2
elif cell_type == "advanced_eukaryote":
self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria")])
self.color = "red"
self.size = 3
elif cell_type == "plant_like":
self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria"), Organelle("chloroplast")])
self.color = "darkgreen"
self.size = 4
def move(self, environment):
dx = random.uniform(-1, 1)
dy = random.uniform(-1, 1)
self.x = max(0, min(environment.width - 1, self.x + dx))
self.y = max(0, min(environment.height - 1, self.y + dy))
self.energy -= 0.5 * self.size
def feed(self, environment):
if "chloroplast" in [org.type for org in self.organelles]:
# Photosynthesis
self.energy += environment.light_level * 2
else:
# Consume environmental nutrients
self.energy += environment.grid[int(self.y)][int(self.x)] * 0.1
environment.grid[int(self.y)][int(self.x)] *= 0.9
def can_divide(self):
return self.energy > self.division_threshold
def divide(self):
if self.can_divide():
self.energy /= 2
return Cell(self.x, self.y, self.cell_type)
return None
def can_fuse(self, other):
return (self.cell_type == "prokaryote" and other.cell_type == "prokaryote" and
random.random() < 0.001) # 0.1% chance of fusion
def fuse(self, other):
new_cell = Cell(
(self.x + other.x) / 2,
(self.y + other.y) / 2,
"early_eukaryote"
)
new_cell.energy = self.energy + other.energy
return new_cell
class Environment:
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = np.random.rand(height, width) * 10 # Nutrient distribution
self.light_level = 5 # Ambient light level
self.cells = []
self.time = 0
self.population_history = {
"prokaryote": [],
"early_eukaryote": [],
"advanced_eukaryote": [],
"plant_like": []
}
def add_cell(self, cell):
self.cells.append(cell)
def update(self):
self.time += 1
# Update environment
self.grid += np.random.rand(self.height, self.width) * 0.1
self.light_level = 5 + np.sin(self.time / 100) * 2 # Fluctuating light levels
new_cells = []
cells_to_remove = []
for cell in self.cells:
cell.move(self)
cell.feed(self)
if cell.energy <= 0:
cells_to_remove.append(cell)
elif cell.can_divide():
new_cell = cell.divide()
if new_cell:
new_cells.append(new_cell)
# Handle cell fusion
for i, cell1 in enumerate(self.cells):
for cell2 in self.cells[i+1:]:
if cell1.can_fuse(cell2):
new_cell = cell1.fuse(cell2)
new_cells.append(new_cell)
cells_to_remove.extend([cell1, cell2])
# Add new cells and remove dead/fused cells
self.cells.extend(new_cells)
self.cells = [cell for cell in self.cells if cell not in cells_to_remove]
# Introduce mutations
for cell in self.cells:
if random.random() < 0.0001: # 0.01% chance of mutation
if cell.cell_type == "early_eukaryote":
cell.cell_type = "advanced_eukaryote"
cell.organelles.append(Organelle("mitochondria"))
cell.color = "red"
cell.size = 3
elif cell.cell_type == "advanced_eukaryote" and random.random() < 0.5:
cell.cell_type = "plant_like"
cell.organelles.append(Organelle("chloroplast"))
cell.color = "darkgreen"
cell.size = 4
# Record population counts
for cell_type in self.population_history.keys():
count = len([cell for cell in self.cells if cell.cell_type == cell_type])
self.population_history[cell_type].append(count)
def get_visualization_data(self):
cell_data = {
"prokaryote": {"x": [], "y": [], "size": [], "color": "lightblue"},
"early_eukaryote": {"x": [], "y": [], "size": [], "color": "green"},
"advanced_eukaryote": {"x": [], "y": [], "size": [], "color": "red"},
"plant_like": {"x": [], "y": [], "size": [], "color": "darkgreen"}
}
for cell in self.cells:
cell_data[cell.cell_type]["x"].append(cell.x)
cell_data[cell.cell_type]["y"].append(cell.y)
cell_data[cell.cell_type]["size"].append(cell.size * 3)
return cell_data, self.population_history
def setup_figure(env):
fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time"))
# Cell distribution
for cell_type, data in env.get_visualization_data()[0].items():
fig.add_trace(go.Scatter(
x=data["x"], y=data["y"], mode='markers',
marker=dict(color=data["color"], size=data["size"]),
name=cell_type
), row=1, col=1)
# Population over time
for cell_type, counts in env.population_history.items():
fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type), row=1, col=2)
fig.update_xaxes(title_text="X", row=1, col=1)
fig.update_yaxes(title_text="Y", row=1, col=1)
fig.update_xaxes(title_text="Time", row=1, col=2)
fig.update_yaxes(title_text="Population", row=1, col=2)
fig.update_layout(height=600, width=1200, title_text="Cell Evolution Simulation")
return fig
# Streamlit app
st.title("Cell Evolution Simulation")
num_steps = st.slider("Number of simulation steps", 100, 1000, 500)
initial_cells = st.slider("Initial number of cells", 10, 100, 50)
update_interval = st.slider("Update interval (milliseconds)", 100, 1000, 200)
if st.button("Run Simulation"):
env = Environment(100, 100)
# Add initial cells
for _ in range(initial_cells):
cell = Cell(random.uniform(0, env.width), random.uniform(0, env.height))
env.add_cell(cell)
# Set up the figure
fig = setup_figure(env)
chart = st.plotly_chart(fig, use_container_width=True)
# Run simulation
for step in range(num_steps):
env.update()
# Update the figure data
with fig.batch_update():
cell_data, population_history = env.get_visualization_data()
for i, (cell_type, data) in enumerate(cell_data.items()):
fig.data[i].x = data["x"]
fig.data[i].y = data["y"]
fig.data[i].marker.size = data["size"]
for i, (cell_type, counts) in enumerate(population_history.items()):
fig.data[i+4].y = counts # +4 because we have 4 cell types in the first subplot
fig.layout.title.text = f"Cell Evolution Simulation (Time: {env.time})"
# Update the chart
chart.plotly_chart(fig, use_container_width=True)
time.sleep(update_interval / 1000) # Convert milliseconds to seconds
st.write("Simulation complete!") |