File size: 7,260 Bytes
22b66c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f259ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b66c4
f259ff8
22b66c4
 
 
 
c508214
22b66c4
 
c508214
22b66c4
c508214
 
 
 
 
 
 
 
22b66c4
c508214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b66c4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import random
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import streamlit as st

class Organelle:
    def __init__(self, type):
        self.type = type  # e.g., "nucleus", "mitochondria", "chloroplast"

class Cell:
    def __init__(self, x, y, cell_type="prokaryote"):
        self.x = x
        self.y = y
        self.energy = 100
        self.cell_type = cell_type
        self.organelles = []
        self.size = 1
        self.color = "blue"
        self.division_threshold = 150
        
        if cell_type == "prokaryote":
            self.color = "lightblue"
        elif cell_type == "early_eukaryote":
            self.organelles.append(Organelle("nucleus"))
            self.color = "green"
            self.size = 2
        elif cell_type == "advanced_eukaryote":
            self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria")])
            self.color = "red"
            self.size = 3
        elif cell_type == "plant_like":
            self.organelles.extend([Organelle("nucleus"), Organelle("mitochondria"), Organelle("chloroplast")])
            self.color = "darkgreen"
            self.size = 4

    def move(self, environment):
        dx = random.uniform(-1, 1)
        dy = random.uniform(-1, 1)
        self.x = max(0, min(environment.width - 1, self.x + dx))
        self.y = max(0, min(environment.height - 1, self.y + dy))
        self.energy -= 0.5 * self.size

    def feed(self, environment):
        if "chloroplast" in [org.type for org in self.organelles]:
            # Photosynthesis
            self.energy += environment.light_level * 2
        else:
            # Consume environmental nutrients
            self.energy += environment.grid[int(self.y)][int(self.x)] * 0.1
            environment.grid[int(self.y)][int(self.x)] *= 0.9

    def can_divide(self):
        return self.energy > self.division_threshold

    def divide(self):
        if self.can_divide():
            self.energy /= 2
            return Cell(self.x, self.y, self.cell_type)
        return None

    def can_fuse(self, other):
        return (self.cell_type == "prokaryote" and other.cell_type == "prokaryote" and
                random.random() < 0.001)  # 0.1% chance of fusion

    def fuse(self, other):
        new_cell = Cell(
            (self.x + other.x) / 2,
            (self.y + other.y) / 2,
            "early_eukaryote"
        )
        new_cell.energy = self.energy + other.energy
        return new_cell

class Environment:
    def __init__(self, width, height):
        self.width = width
        self.height = height
        self.grid = np.random.rand(height, width) * 10  # Nutrient distribution
        self.light_level = 5  # Ambient light level
        self.cells = []
        self.time = 0

    def add_cell(self, cell):
        self.cells.append(cell)

    def update(self):
        self.time += 1
        
        # Update environment
        self.grid += np.random.rand(self.height, self.width) * 0.1
        self.light_level = 5 + np.sin(self.time / 100) * 2  # Fluctuating light levels

        new_cells = []
        cells_to_remove = []

        for cell in self.cells:
            cell.move(self)
            cell.feed(self)

            if cell.energy <= 0:
                cells_to_remove.append(cell)
            elif cell.can_divide():
                new_cell = cell.divide()
                if new_cell:
                    new_cells.append(new_cell)

        # Handle cell fusion
        for i, cell1 in enumerate(self.cells):
            for cell2 in self.cells[i+1:]:
                if cell1.can_fuse(cell2):
                    new_cell = cell1.fuse(cell2)
                    new_cells.append(new_cell)
                    cells_to_remove.extend([cell1, cell2])

        # Add new cells and remove dead/fused cells
        self.cells.extend(new_cells)
        self.cells = [cell for cell in self.cells if cell not in cells_to_remove]

        # Introduce mutations
        for cell in self.cells:
            if random.random() < 0.0001:  # 0.01% chance of mutation
                if cell.cell_type == "early_eukaryote":
                    cell.cell_type = "advanced_eukaryote"
                    cell.organelles.append(Organelle("mitochondria"))
                    cell.color = "red"
                    cell.size = 3
                elif cell.cell_type == "advanced_eukaryote" and random.random() < 0.5:
                    cell.cell_type = "plant_like"
                    cell.organelles.append(Organelle("chloroplast"))
                    cell.color = "darkgreen"
                    cell.size = 4

    def visualize(self):
        fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time"))

        def setup_figure(env):
    fig = make_subplots(rows=1, cols=2, subplot_titles=("Cell Distribution", "Population Over Time"))

    # Cell distribution
    for cell_type, data in env.get_visualization_data()[0].items():
        fig.add_trace(go.Scatter(
            x=data["x"], y=data["y"], mode='markers',
            marker=dict(color=data["color"], size=data["size"]),
            name=cell_type
        ), row=1, col=1)

    # Population over time
    for cell_type, counts in env.population_history.items():
        fig.add_trace(go.Scatter(y=counts, mode='lines', name=cell_type), row=1, col=2)

    fig.update_xaxes(title_text="X", row=1, col=1)
    fig.update_yaxes(title_text="Y", row=1, col=1)
    fig.update_xaxes(title_text="Time", row=1, col=2)
    fig.update_yaxes(title_text="Population", row=1, col=2)

    fig.update_layout(height=600, width=1200, title_text="Cell Evolution Simulation")

    return fig

# Streamlit app
st.title("Cell Evolution Simulation")

num_steps = st.slider("Number of simulation steps", 100, 1000, 500)
initial_cells = st.slider("Initial number of cells", 10, 100, 50)
update_interval = st.slider("Update interval (milliseconds)", 100, 1000, 200)

if st.button("Run Simulation"):
    env = Environment(100, 100)
    
    # Add initial cells
    for _ in range(initial_cells):
        cell = Cell(random.uniform(0, env.width), random.uniform(0, env.height))
        env.add_cell(cell)
    
    # Set up the figure
    fig = setup_figure(env)
    chart = st.plotly_chart(fig, use_container_width=True)
    
    # Run simulation
    for step in range(num_steps):
        env.update()
        
        # Update the figure data
        with fig.batch_update():
            cell_data, population_history = env.get_visualization_data()
            for i, (cell_type, data) in enumerate(cell_data.items()):
                fig.data[i].x = data["x"]
                fig.data[i].y = data["y"]
                fig.data[i].marker.size = data["size"]
            
            for i, (cell_type, counts) in enumerate(population_history.items()):
                fig.data[i+4].y = counts  # +4 because we have 4 cell types in the first subplot
        
        fig.layout.title.text = f"Cell Evolution Simulation (Time: {env.time})"
        
        # Update the chart
        chart.plotly_chart(fig, use_container_width=True)
        
        time.sleep(update_interval / 1000)  # Convert milliseconds to seconds

    st.write("Simulation complete!")