File size: 1,737 Bytes
7103ccc
1ba32de
7103ccc
1ba32de
748826b
7103ccc
714a27c
1ba32de
416fea8
748826b
2371338
 
 
 
1ba32de
748826b
d590a55
 
1ba32de
 
d590a55
1ba32de
748826b
 
1ba32de
748826b
416fea8
 
748826b
1ba32de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e78e4f
9006e63
 
 
1ba32de
 
9006e63
 
 
1ba32de
9006e63
 
1ba32de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModel
import plotly.graph_objects as go

model_name = "mistralai/Mistral-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = None

# Set pad token to eos token if not defined
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

@spaces.GPU
def get_embedding(text):
    global model
    if model is None:
        model = AutoModel.from_pretrained(model_name).cuda()
        model.resize_token_embeddings(len(tokenizer))
    
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()

def reduce_to_3d(embedding):
    return embedding[:3]

@spaces.GPU
def compare_embeddings(text1, text2):
    emb1 = get_embedding(text1)
    emb2 = get_embedding(text2)
    
    emb1_3d = reduce_to_3d(emb1)
    emb2_3d = reduce_to_3d(emb2)
    
    fig = go.Figure(data=[
        go.Scatter3d(x=[0, emb1_3d[0]], y=[0, emb1_3d[1]], z=[0, emb1_3d[2]], mode='lines+markers', name='Text 1'),
        go.Scatter3d(x=[0, emb2_3d[0]], y=[0, emb2_3d[1]], z=[0, emb2_3d[2]], mode='lines+markers', name='Text 2')
    ])
    
    fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
    
    return fig

iface = gr.Interface(
    fn=compare_embeddings,
    inputs=[
        gr.Textbox(label="Text 1"),
        gr.Textbox(label="Text 2")
    ],
    outputs=gr.Plot(),
    title="3D Embedding Comparison",
    description="Compare the embeddings of two strings visualized in 3D space using Mistral 7B."
)

iface.launch()