File size: 2,366 Bytes
7103ccc
5a0b505
 
 
748826b
7103ccc
edd101a
 
5a0b505
 
748826b
5a0b505
 
 
 
 
 
 
 
edd101a
5a0b505
 
 
 
 
 
 
 
 
 
 
4250d36
d3f7084
4250d36
1ba32de
4250d36
88b0945
4250d36
 
 
1ba32de
 
 
 
5e78e4f
4250d36
d7977e8
4250d36
 
 
edd101a
4250d36
d3f7084
4250d36
 
66e1050
4250d36
 
 
 
 
d3f7084
d7977e8
d3f7084
 
4250d36
 
66e1050
4250d36
 
 
 
d3f7084
4250d36
 
9006e63
edd101a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModel
import plotly.graph_objects as go

# Update the model name to Llama 3.1
model_name = "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = None

# Set pad token to eos token if not defined
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

@spaces.GPU
def get_embedding(text):
    global model
    if model is None:
        model = AutoModel.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
        model.resize_token_embeddings(len(tokenizer))
    
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()

def reduce_to_3d(embedding):
    return embedding[:3]

@spaces.GPU
def compare_embeddings(*texts):
    embeddings = [get_embedding(text) for text in texts if text.strip()]
    embeddings_3d = [reduce_to_3d(emb) for emb in embeddings]
    
    fig = go.Figure()
    
    for i, emb in enumerate(embeddings_3d):
        fig.add_trace(go.Scatter3d(x=[0, emb[0]], y=[0, emb[1]], z=[0, emb[2]], 
                                   mode='lines+markers', name=f'Text {i+1}'))
    
    fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z'))
    
    return fig

def generate_text_boxes(n):
    return [gr.Textbox(label=f"Text {i+1}", visible=(i < n)) for i in range(10)]

with gr.Blocks() as iface:
    gr.Markdown("# 3D Embedding Comparison")
    gr.Markdown("Compare the embeddings of multiple strings visualized in 3D space using Llama 3.1.")
    
    num_texts = gr.Slider(minimum=2, maximum=10, step=1, value=2, label="Number of texts to compare")
    
    with gr.Column() as input_column:
        text_boxes = generate_text_boxes(2)
    
    output = gr.Plot()
    
    compare_button = gr.Button("Compare Embeddings")
    
    def update_interface(n):
        return [gr.update(visible=(i < n)) for i in range(10)]

    num_texts.change(
        update_interface,
        inputs=[num_texts],
        outputs=text_boxes
    )
    
    compare_button.click(
        compare_embeddings,
        inputs=text_boxes,
        outputs=output
    )

iface.launch()