|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
import plotly.graph_objects as go |
|
|
|
model_name = "mistralai/Mistral-7B-v0.1" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = None |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
@spaces.GPU |
|
def get_embedding(text): |
|
global model |
|
if model is None: |
|
model = AutoModel.from_pretrained(model_name).cuda() |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda') |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy() |
|
|
|
def reduce_to_3d(embedding): |
|
return embedding[:3] |
|
|
|
@spaces.GPU |
|
def compare_embeddings(text1, text2): |
|
emb1 = get_embedding(text1) |
|
emb2 = get_embedding(text2) |
|
|
|
emb1_3d = reduce_to_3d(emb1) |
|
emb2_3d = reduce_to_3d(emb2) |
|
|
|
fig = go.Figure(data=[ |
|
go.Scatter3d(x=[0, emb1_3d[0]], y=[0, emb1_3d[1]], z=[0, emb1_3d[2]], mode='lines+markers', name='Text 1'), |
|
go.Scatter3d(x=[0, emb2_3d[0]], y=[0, emb2_3d[1]], z=[0, emb2_3d[2]], mode='lines+markers', name='Text 2') |
|
]) |
|
|
|
fig.update_layout(scene=dict(xaxis_title='X', yaxis_title='Y', zaxis_title='Z')) |
|
|
|
return fig |
|
|
|
iface = gr.Interface( |
|
fn=compare_embeddings, |
|
inputs=[ |
|
gr.Textbox(label="Text 1"), |
|
gr.Textbox(label="Text 2") |
|
], |
|
outputs=gr.Plot(), |
|
title="3D Embedding Comparison", |
|
description="Compare the embeddings of two strings visualized in 3D space using Mistral 7B." |
|
) |
|
|
|
iface.launch() |