Spaces:
Running
Running
File size: 7,306 Bytes
eefa003 9497fc8 31bd9a2 9497fc8 31bd9a2 0d67078 eefa003 4d9f591 0d67078 31bd9a2 b363c40 eefa003 0d67078 eefa003 0d67078 9497fc8 31bd9a2 0d67078 eefa003 0d67078 9497fc8 eefa003 0d67078 9e185d2 eefa003 0d67078 9e185d2 9497fc8 eefa003 0d67078 31bd9a2 1ed1b11 31bd9a2 0d67078 9e185d2 31bd9a2 9e185d2 31bd9a2 9e185d2 0d67078 9e185d2 0d67078 9e185d2 0d67078 9e185d2 0d67078 9e185d2 0d67078 9e185d2 0d67078 9e185d2 0d67078 9e185d2 31bd9a2 eefa003 0d67078 1ed1b11 0d67078 7b87598 0d67078 1ed1b11 0d67078 9497fc8 1ed1b11 0d67078 7b87598 1ed1b11 0d67078 31bd9a2 0d67078 1ed1b11 0d67078 31bd9a2 0d67078 1ed1b11 0d67078 31bd9a2 80a0edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import datetime
from openai import OpenAI
import gradio as gr
from utils import COMMUNITY_POSTFIX_URL, get_model_config, log_message, check_format, models_config
print(f"Gradio version: {gr.__version__}")
DEFAULT_MODEL_NAME = "Apriel-Nemotron-15b-Thinker"
chat_start_count = 0
model_config = None
client = None
def setup_model(model_name, intial=False):
global model_config, client
model_config = get_model_config(model_name)
log_message(f"update_model() --> Model config: {model_config}")
client = OpenAI(
api_key=model_config.get('AUTH_TOKEN'),
base_url=model_config.get('VLLM_API_URL')
)
_model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1]
_link = f"<a href='{model_config.get('MODEL_HF_URL')}{COMMUNITY_POSTFIX_URL}' target='_blank'>{_model_hf_name}</a>"
_description = f"Please use the community section on this space to provide feedback! {_link}"
print(f"Switched to model {_model_hf_name}")
if intial:
return
else:
return _description
def chat_fn(message, history):
log_message(f"{'-' * 80}")
log_message(f"chat_fn() --> Message: {message}")
log_message(f"chat_fn() --> History: {history}")
global chat_start_count
chat_start_count = chat_start_count + 1
print(
f"{datetime.datetime.now()}: chat_start_count: {chat_start_count}, turns: {int(len(history if history else []) / 3)}")
is_reasoning = model_config.get("REASONING")
# Remove any assistant messages with metadata from history for multiple turns
log_message(f"Original History: {history}")
check_format(history, "messages")
history = [item for item in history if
not (isinstance(item, dict) and
item.get("role") == "assistant" and
isinstance(item.get("metadata"), dict) and
item.get("metadata", {}).get("title") is not None)]
log_message(f"Updated History: {history}")
check_format(history, "messages")
history.append({"role": "user", "content": message})
log_message(f"History with user message: {history}")
check_format(history, "messages")
# Create the streaming response
try:
stream = client.chat.completions.create(
model=model_config.get('MODEL_NAME'),
messages=history,
temperature=0.8,
stream=True
)
except Exception as e:
print(f"Error: {e}")
yield gr.ChatMessage(
role="assistant",
content="😔 The model is unavailable at the moment. Please try again later.",
)
return
if is_reasoning:
history.append(gr.ChatMessage(
role="assistant",
content="Thinking...",
metadata={"title": "🧠 Thought"}
))
log_message(f"History added thinking: {history}")
check_format(history, "messages")
output = ""
completion_started = False
for chunk in stream:
# Extract the new content from the delta field
content = getattr(chunk.choices[0].delta, "content", "")
output += content
if is_reasoning:
parts = output.split("[BEGIN FINAL RESPONSE]")
if len(parts) > 1:
if parts[1].endswith("[END FINAL RESPONSE]"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
if parts[1].endswith("<|end|>"):
parts[1] = parts[1].replace("<|end|>", "")
history[-1 if not completion_started else -2] = gr.ChatMessage(
role="assistant",
content=parts[0],
metadata={"title": "🧠 Thought"}
)
if completion_started:
history[-1] = gr.ChatMessage(
role="assistant",
content=parts[1]
)
elif len(parts) > 1 and not completion_started:
completion_started = True
history.append(gr.ChatMessage(
role="assistant",
content=parts[1]
))
else:
if output.endswith("<|end|>"):
output = output.replace("<|end|>", "")
history[-1] = gr.ChatMessage(
role="assistant",
content=output
)
# only yield the most recent assistant messages
messages_to_yield = history[-1:] if not completion_started else history[-2:]
# check_format(messages_to_yield, "messages")
# log_message(f"Yielding messages: {messages_to_yield}")
yield messages_to_yield
log_message(f"Final History: {history}")
check_format(history, "messages")
title = None
description = None
with gr.Blocks(theme=gr.themes.Default(primary_hue="green")) as demo:
gr.HTML("""
<style>
.model-message {
text-align: end;
}
.model-dropdown-container {
display: flex;
align-items: center;
gap: 10px;
padding: 0;
}
.chatbot {
max-height: 1400px;
}
@media (max-width: 800px) {
.responsive-row {
flex-direction: column;
}
.model-message {
text-align: start;
}
.model-dropdown-container {
flex-direction: column;
align-items: flex-start;
}
.chatbot {
max-height: 900px;
}
}
""")
with gr.Row(variant="panel", elem_classes="responsive-row"):
with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"):
model_dropdown = gr.Dropdown(
choices=[f"Model: {model}" for model in models_config.keys()],
value=f"Model: {DEFAULT_MODEL_NAME}",
label=None,
interactive=True,
container=False,
scale=0,
min_width=400
)
with gr.Column(scale=4, min_width=0):
description_html = gr.HTML(description, elem_classes="model-message")
chatbot = gr.Chatbot(
type="messages",
height="calc(100dvh - 280px)",
elem_classes="chatbot",
)
chat_interface = gr.ChatInterface(
chat_fn,
description="",
type="messages",
chatbot=chatbot,
fill_height=True,
)
# Add this line to ensure the model is reset to default on page reload
demo.load(lambda: setup_model(DEFAULT_MODEL_NAME, intial=False), [], [description_html])
def update_model_and_clear(model_name):
# Remove the "Model: " prefix to get the actual model name
actual_model_name = model_name.replace("Model: ", "")
desc = setup_model(actual_model_name)
chatbot.clear() # Critical line
return desc
model_dropdown.change(
fn=update_model_and_clear,
inputs=[model_dropdown],
outputs=[description_html]
)
demo.launch(ssr_mode=False)
|