Spaces:
Running
Running
File size: 5,866 Bytes
31bd9a2 9497fc8 eefa003 9497fc8 31bd9a2 9497fc8 31bd9a2 eefa003 4d9f591 9e185d2 a220efd 31bd9a2 eefa003 9e185d2 31bd9a2 9e185d2 651a6e5 eefa003 9497fc8 eefa003 9497fc8 31bd9a2 eefa003 9497fc8 eefa003 9497fc8 9e185d2 eefa003 9497fc8 9e185d2 9497fc8 eefa003 9497fc8 31bd9a2 9e185d2 9497fc8 31bd9a2 9e185d2 eefa003 9497fc8 9e185d2 31bd9a2 9e185d2 31bd9a2 9e185d2 9497fc8 9e185d2 31bd9a2 eefa003 9497fc8 31bd9a2 9e185d2 31bd9a2 9e185d2 31bd9a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import sys
import datetime
from openai import OpenAI
import gradio as gr
from gradio.components.chatbot import ChatMessage, Message
from typing import (
Any,
Literal,
)
DEBUG_LOG = False or os.environ.get("DEBUG_LOG") == "True"
print(f"Gradio version: {gr.__version__}")
title = None # "ServiceNow-AI Chat" # modelConfig.get('MODE_DISPLAY_NAME')
description = "Please use the community section on this space to provide feedback! <a href=\"https://huggingface.co/ServiceNow-AI/Apriel-Nemotron-15b-Thinker/discussions\">ServiceNow-AI/Apriel-Nemotron-Chat</a>"
chat_start_count = 0
model_config = {
"MODEL_NAME": os.environ.get("MODEL_NAME"),
"MODE_DISPLAY_NAME": os.environ.get("MODE_DISPLAY_NAME"),
"MODEL_HF_URL": os.environ.get("MODEL_HF_URL"),
"VLLM_API_URL": os.environ.get("VLLM_API_URL"),
"AUTH_TOKEN": os.environ.get("AUTH_TOKEN")
}
# Initialize the OpenAI client with the vLLM API URL and token
client = OpenAI(
api_key=model_config.get('AUTH_TOKEN'),
base_url=model_config.get('VLLM_API_URL')
)
def log_message(message):
if DEBUG_LOG is True:
print(message)
# Gradio 5.0.1 had issues with checking the message formats. 5.29.0 does not!
def _check_format(messages: Any, type: Literal["messages", "tuples"] = "messages") -> None:
if type == "messages":
all_valid = all(
isinstance(message, dict)
and "role" in message
and "content" in message
or isinstance(message, ChatMessage | Message)
for message in messages
)
if not all_valid:
# Display which message is not valid
for i, message in enumerate(messages):
if not (isinstance(message, dict) and
"role" in message and
"content" in message) and not isinstance(message, ChatMessage | Message):
print(f"_check_format() --> Invalid message at index {i}: {message}\n", file=sys.stderr)
break
raise Exception(
"Data incompatible with messages format. Each message should be a dictionary with 'role' and 'content' keys or a ChatMessage object."
)
# else:
# print("_check_format() --> All messages are valid.")
elif not all(
isinstance(message, (tuple, list)) and len(message) == 2
for message in messages
):
raise Exception(
"Data incompatible with tuples format. Each message should be a list of length 2."
)
def chat_fn(message, history):
log_message(f"{'-' * 80}\nchat_fn() --> Message: {message}")
global chat_start_count
chat_start_count = chat_start_count + 1
print(
f"{datetime.datetime.now()}: chat_start_count: {chat_start_count}, turns: {int(len(history if history else []) / 3)}")
# Remove any assistant messages with metadata from history for multiple turns
log_message(f"Original History: {history}")
_check_format(history, "messages")
history = [item for item in history if
not (isinstance(item, dict) and
item.get("role") == "assistant" and
isinstance(item.get("metadata"), dict) and
item.get("metadata", {}).get("title") is not None)]
log_message(f"Updated History: {history}")
_check_format(history, "messages")
history.append({"role": "user", "content": message})
log_message(f"History with user message: {history}")
_check_format(history, "messages")
# Create the streaming response
stream = client.chat.completions.create(
model=model_config.get('MODEL_NAME'),
messages=history,
temperature=0.8,
stream=True
)
history.append(gr.ChatMessage(
role="assistant",
content="Thinking...",
metadata={"title": "🧠 Thought"}
))
log_message(f"History added thinking: {history}")
_check_format(history, "messages")
output = ""
completion_started = False
for chunk in stream:
# Extract the new content from the delta field
content = getattr(chunk.choices[0].delta, "content", "")
output += content
parts = output.split("[BEGIN FINAL RESPONSE]")
if len(parts) > 1:
if parts[1].endswith("[END FINAL RESPONSE]"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
history[-1 if not completion_started else -2] = gr.ChatMessage(
role="assistant",
content=parts[0],
metadata={"title": "🧠 Thought"}
)
if completion_started:
history[-1] = gr.ChatMessage(
role="assistant",
content=parts[1]
)
elif len(parts) > 1 and not completion_started:
completion_started = True
history.append(gr.ChatMessage(
role="assistant",
content=parts[1]
))
# only yield the most recent assistant messages
messages_to_yield = history[-1:] if not completion_started else history[-2:]
# _check_format(messages_to_yield, "messages")
yield messages_to_yield
log_message(f"Final History: {history}")
_check_format(history, "messages")
# Add the model display name and Hugging Face URL to the description
# description = f"### Model: [{MODE_DISPLAY_NAME}]({MODEL_HF_URL})"
print(f"Running model {model_config.get('MODE_DISPLAY_NAME')} ({model_config.get('MODEL_NAME')})")
gr.ChatInterface(
chat_fn,
title=title,
description=description,
theme=gr.themes.Default(primary_hue="green"),
type="messages",
).launch()
|