Apriel-Chat / app.py
bradnow's picture
Add community link for 15b nemotron
a220efd
raw
history blame
5.87 kB
import os
import sys
import datetime
from openai import OpenAI
import gradio as gr
from gradio.components.chatbot import ChatMessage, Message
from typing import (
Any,
Literal,
)
DEBUG_LOG = False or os.environ.get("DEBUG_LOG") == "True"
print(f"Gradio version: {gr.__version__}")
title = None # "ServiceNow-AI Chat" # modelConfig.get('MODE_DISPLAY_NAME')
description = "Please use the community section on this space to provide feedback! <a href=\"https://huggingface.co/ServiceNow-AI/Apriel-Nemotron-15b-Thinker/discussions\">ServiceNow-AI/Apriel-Nemotron-Chat</a>"
chat_start_count = 0
model_config = {
"MODEL_NAME": os.environ.get("MODEL_NAME"),
"MODE_DISPLAY_NAME": os.environ.get("MODE_DISPLAY_NAME"),
"MODEL_HF_URL": os.environ.get("MODEL_HF_URL"),
"VLLM_API_URL": os.environ.get("VLLM_API_URL"),
"AUTH_TOKEN": os.environ.get("AUTH_TOKEN")
}
# Initialize the OpenAI client with the vLLM API URL and token
client = OpenAI(
api_key=model_config.get('AUTH_TOKEN'),
base_url=model_config.get('VLLM_API_URL')
)
def log_message(message):
if DEBUG_LOG is True:
print(message)
# Gradio 5.0.1 had issues with checking the message formats. 5.29.0 does not!
def _check_format(messages: Any, type: Literal["messages", "tuples"] = "messages") -> None:
if type == "messages":
all_valid = all(
isinstance(message, dict)
and "role" in message
and "content" in message
or isinstance(message, ChatMessage | Message)
for message in messages
)
if not all_valid:
# Display which message is not valid
for i, message in enumerate(messages):
if not (isinstance(message, dict) and
"role" in message and
"content" in message) and not isinstance(message, ChatMessage | Message):
print(f"_check_format() --> Invalid message at index {i}: {message}\n", file=sys.stderr)
break
raise Exception(
"Data incompatible with messages format. Each message should be a dictionary with 'role' and 'content' keys or a ChatMessage object."
)
# else:
# print("_check_format() --> All messages are valid.")
elif not all(
isinstance(message, (tuple, list)) and len(message) == 2
for message in messages
):
raise Exception(
"Data incompatible with tuples format. Each message should be a list of length 2."
)
def chat_fn(message, history):
log_message(f"{'-' * 80}\nchat_fn() --> Message: {message}")
global chat_start_count
chat_start_count = chat_start_count + 1
print(
f"{datetime.datetime.now()}: chat_start_count: {chat_start_count}, turns: {int(len(history if history else []) / 3)}")
# Remove any assistant messages with metadata from history for multiple turns
log_message(f"Original History: {history}")
_check_format(history, "messages")
history = [item for item in history if
not (isinstance(item, dict) and
item.get("role") == "assistant" and
isinstance(item.get("metadata"), dict) and
item.get("metadata", {}).get("title") is not None)]
log_message(f"Updated History: {history}")
_check_format(history, "messages")
history.append({"role": "user", "content": message})
log_message(f"History with user message: {history}")
_check_format(history, "messages")
# Create the streaming response
stream = client.chat.completions.create(
model=model_config.get('MODEL_NAME'),
messages=history,
temperature=0.8,
stream=True
)
history.append(gr.ChatMessage(
role="assistant",
content="Thinking...",
metadata={"title": "🧠 Thought"}
))
log_message(f"History added thinking: {history}")
_check_format(history, "messages")
output = ""
completion_started = False
for chunk in stream:
# Extract the new content from the delta field
content = getattr(chunk.choices[0].delta, "content", "")
output += content
parts = output.split("[BEGIN FINAL RESPONSE]")
if len(parts) > 1:
if parts[1].endswith("[END FINAL RESPONSE]"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
history[-1 if not completion_started else -2] = gr.ChatMessage(
role="assistant",
content=parts[0],
metadata={"title": "🧠 Thought"}
)
if completion_started:
history[-1] = gr.ChatMessage(
role="assistant",
content=parts[1]
)
elif len(parts) > 1 and not completion_started:
completion_started = True
history.append(gr.ChatMessage(
role="assistant",
content=parts[1]
))
# only yield the most recent assistant messages
messages_to_yield = history[-1:] if not completion_started else history[-2:]
# _check_format(messages_to_yield, "messages")
yield messages_to_yield
log_message(f"Final History: {history}")
_check_format(history, "messages")
# Add the model display name and Hugging Face URL to the description
# description = f"### Model: [{MODE_DISPLAY_NAME}]({MODEL_HF_URL})"
print(f"Running model {model_config.get('MODE_DISPLAY_NAME')} ({model_config.get('MODEL_NAME')})")
gr.ChatInterface(
chat_fn,
title=title,
description=description,
theme=gr.themes.Default(primary_hue="green"),
type="messages",
).launch()