Spaces:
Sleeping
Sleeping
from shared import DatasetArguments | |
from utils import jaccard | |
from functools import lru_cache | |
from datetime import datetime | |
import itertools | |
from typing import Optional | |
import model as model_module | |
import segment | |
from tqdm import tqdm | |
from dataclasses import dataclass, field | |
from transformers import HfArgumentParser | |
from shared import extract_sponsor_matches_from_text, ACTION_OPTIONS, CATEGORIES, CATGEGORY_OPTIONS, START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE, GeneralArguments, CustomTokens | |
import csv | |
import re | |
import random | |
import logging | |
from youtube_transcript_api import YouTubeTranscriptApi, CouldNotRetrieveTranscript, YouTubeRequestFailed, TooManyRequests | |
import os | |
import json | |
import time | |
import requests | |
logging.basicConfig() | |
logger = logging.getLogger(__name__) | |
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity | |
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing | |
NUM_DECIMALS = 3 | |
# https://www.fincher.org/Utilities/CountryLanguageList.shtml | |
# https://lingohub.com/developers/supported-locales/language-designators-with-regions | |
LANGUAGE_PREFERENCE_LIST = ['en-GB', 'en-US', 'en-CA', 'en-AU', 'en-NZ', 'en-ZA', | |
'en-IE', 'en-IN', 'en-JM', 'en-BZ', 'en-TT', 'en-PH', 'en-ZW', | |
'en'] | |
def parse_transcript_json(json_data, granularity): | |
assert json_data['wireMagic'] == 'pb3' | |
assert granularity in ('word', 'chunk') | |
# TODO remove bracketed words? | |
# (kiss smacks) | |
# (upbeat music) | |
# [text goes here] | |
# Some manual transcripts aren't that well formatted... but do have punctuation | |
# https://www.youtube.com/watch?v=LR9FtWVjk2c | |
parsed_transcript = [] | |
events = json_data['events'] | |
for event_index, event in enumerate(events): | |
segments = event.get('segs') | |
if not segments: | |
continue | |
# This value is known (when phrase appears on screen) | |
start_ms = event['tStartMs'] | |
total_characters = 0 | |
new_segments = [] | |
for seg in segments: | |
# Replace \n, \t, etc. with space | |
text = ' '.join(seg['utf8'].split()) | |
# Remove zero-width spaces and strip trailing and leading whitespace | |
text = text.replace('\u200b', '').replace('\u200c', '').replace( | |
'\u200d', '').replace('\ufeff', '').strip() | |
# Alternatively, | |
# text = text.encode('ascii', 'ignore').decode() | |
# Needed for auto-generated transcripts | |
text = text.replace(PROFANITY_RAW, PROFANITY_CONVERTED) | |
if not text: | |
continue | |
offset_ms = seg.get('tOffsetMs', 0) | |
new_segments.append({ | |
'text': text, | |
'start': round((start_ms + offset_ms)/1000, NUM_DECIMALS) | |
}) | |
total_characters += len(text) | |
if not new_segments: | |
continue | |
if event_index < len(events) - 1: | |
next_start_ms = events[event_index + 1]['tStartMs'] | |
total_event_duration_ms = min( | |
event.get('dDurationMs', float('inf')), next_start_ms - start_ms) | |
else: | |
total_event_duration_ms = event.get('dDurationMs', 0) | |
# Ensure duration is non-negative | |
total_event_duration_ms = max(total_event_duration_ms, 0) | |
avg_seconds_per_character = ( | |
total_event_duration_ms/total_characters)/1000 | |
num_char_count = 0 | |
for seg_index, seg in enumerate(new_segments): | |
num_char_count += len(seg['text']) | |
# Estimate segment end | |
seg_end = seg['start'] + \ | |
(num_char_count * avg_seconds_per_character) | |
if seg_index < len(new_segments) - 1: | |
# Do not allow longer than next | |
seg_end = min(seg_end, new_segments[seg_index+1]['start']) | |
seg['end'] = round(seg_end, NUM_DECIMALS) | |
parsed_transcript.append(seg) | |
final_parsed_transcript = [] | |
for i in range(len(parsed_transcript)): | |
word_level = granularity == 'word' | |
if word_level: | |
split_text = parsed_transcript[i]['text'].split() | |
elif granularity == 'chunk': | |
# Split on space after punctuation | |
split_text = re.split( | |
r'(?<=[.!?,-;])\s+', parsed_transcript[i]['text']) | |
if len(split_text) == 1: | |
split_on_whitespace = parsed_transcript[i]['text'].split() | |
if len(split_on_whitespace) >= 8: # Too many words | |
# Rather split on whitespace instead of punctuation | |
split_text = split_on_whitespace | |
else: | |
word_level = True | |
else: | |
raise ValueError('Unknown granularity') | |
segment_end = parsed_transcript[i]['end'] | |
if i < len(parsed_transcript) - 1: | |
segment_end = min(segment_end, parsed_transcript[i+1]['start']) | |
segment_duration = segment_end - parsed_transcript[i]['start'] | |
num_chars_in_text = sum(map(len, split_text)) | |
num_char_count = 0 | |
current_offset = 0 | |
for s in split_text: | |
num_char_count += len(s) | |
next_offset = (num_char_count/num_chars_in_text) * segment_duration | |
word_start = round( | |
parsed_transcript[i]['start'] + current_offset, NUM_DECIMALS) | |
word_end = round( | |
parsed_transcript[i]['start'] + next_offset, NUM_DECIMALS) | |
# Make the reasonable assumption that min wps is 1.5 | |
final_parsed_transcript.append({ | |
'text': s, | |
'start': word_start, | |
'end': min(word_end, word_start + 1.5) if word_level else word_end | |
}) | |
current_offset = next_offset | |
return final_parsed_transcript | |
def list_transcripts(video_id): | |
try: | |
return YouTubeTranscriptApi.list_transcripts(video_id) | |
except json.decoder.JSONDecodeError: | |
return None | |
WORDS_TO_REMOVE = [ | |
CustomTokens.MUSIC.value, | |
CustomTokens.APPLAUSE.value, | |
CustomTokens.LAUGHTER.value | |
] | |
def get_words(video_id, process=True, transcript_type='auto', fallback='manual', filter_words_to_remove=True, download=False, granularity='word'): | |
"""Get parsed video transcript with caching system | |
returns None if not processed yet and process is False | |
""" | |
# NOTE: granularity='chunk' should only be used for generating training data... nowhere else | |
transcript_path = os.path.join( # TODO use relative path to this | |
'transcripts', transcript_type, f'{video_id}.json') | |
raw_transcript_json = None | |
try: | |
if not download and os.path.exists(transcript_path): # Load from file | |
with open(transcript_path) as fp: | |
raw_transcript_json = json.load(fp) # May be empty | |
elif process: | |
transcript_list = list_transcripts(video_id) | |
if transcript_list is not None: | |
if transcript_type == 'manual': | |
ts = transcript_list.find_manually_created_transcript( | |
LANGUAGE_PREFERENCE_LIST) | |
else: | |
ts = transcript_list.find_generated_transcript( | |
LANGUAGE_PREFERENCE_LIST) | |
raw_transcript = ts._http_client.get( | |
f'{ts._url}&fmt=json3').content | |
if raw_transcript: | |
raw_transcript_json = json.loads(raw_transcript) | |
except (TooManyRequests, YouTubeRequestFailed): | |
raise # Cannot recover from these errors and do not mark as empty transcript | |
except requests.exceptions.RequestException: # Can recover | |
time.sleep(10) # Timeout | |
return get_words(video_id, process, transcript_type, fallback, granularity) | |
except CouldNotRetrieveTranscript: # Retrying won't solve | |
pass # Mark as empty transcript | |
except json.decoder.JSONDecodeError: | |
logger.warning(f'JSONDecodeError for {video_id}') | |
if os.path.exists(transcript_path): | |
os.remove(transcript_path) # Remove file and try again | |
return get_words(video_id, process, transcript_type, fallback, granularity) | |
# Tried to process it, but it was empty... | |
if download or (process and not os.path.exists(transcript_path)): | |
with open(transcript_path, 'w') as fp: | |
json.dump(raw_transcript_json, fp) | |
if not raw_transcript_json and fallback is not None: | |
return get_words(video_id, process, transcript_type=fallback, fallback=None, granularity=granularity) | |
if raw_transcript_json: | |
processed_transcript = parse_transcript_json( | |
raw_transcript_json, granularity) | |
if filter_words_to_remove: | |
processed_transcript = list( | |
filter(lambda x: x['text'] not in WORDS_TO_REMOVE, processed_transcript)) | |
else: | |
processed_transcript = raw_transcript_json # Either None or [] | |
return processed_transcript | |
# TODO make min_sponsor_segment_length param | |
# TODO rename to extract_segments | |
def extract_sponsors(words, min_sponsor_segment_length=3): | |
if not words: | |
return [] | |
paragraphs = [] | |
current = [] | |
prev_category = None | |
for i in range(len(words) + 1): | |
unimportant = i == len(words) or words[i].get('category') is None | |
if unimportant or words[i].get('category') != prev_category: | |
if current: # Save the current batch | |
paragraphs.append({ | |
'words': current, | |
'category': current[-1].get('category'), | |
}) | |
current = [] | |
if not unimportant: # Some useful information to save | |
current.append(words[i]) | |
prev_category = words[i].get('category') | |
# Remove all too short: | |
return list(filter(lambda x: len(x['words']) >= min_sponsor_segment_length, paragraphs)) | |
def clean_text(text): | |
# Replace impossibly long words with a special token | |
# Usually the result of incorrect labelling | |
text = re.sub(r'\w{64,}', CustomTokens.LONG_WORD.value, text) | |
SHORT_HYPHENATED_REGEX = r'\w{1,2}(?:-\w{1,2}){3,}(?:-?\w*)' | |
# Replace hyphenated URLs with special token | |
# For some reason, youtube sometimes transcribes urls in this form: | |
# 'b-a-b-b-e-l-dot-com', 'g-e-t-r-o-m-a-n-com' | |
# not 'e-commerce' | |
text = re.sub(f'{SHORT_HYPHENATED_REGEX}(?:com|org|net)', | |
CustomTokens.HYPHENATED_URL.value, text) | |
# Replace short+hyphenated text with a special token. Of the form: | |
# 'i-i-i-i-i-i-i-i-i-i-i-i', 'b-u-m-f-u-z-z-l-e', 'v-e-r-i-t-a-s-i-u-m', 'do-do-do-do-do' | |
text = re.sub(SHORT_HYPHENATED_REGEX, | |
CustomTokens.SHORT_HYPHENATED.value, text) | |
# Replace URLs with URL_TOKEN | |
URL_REGEX = r'(?:(?:http|https)\:\/\/)?[a-zA-Z0-9\.\/\?\:@\-_=#]+\.(?:[a-zA-Z]){2,6}(?:[a-zA-Z0-9\.\&\/\?\:@\-_=#%])*' | |
text = re.sub(URL_REGEX, CustomTokens.URL.value, text) | |
NUM_REGEX = r'(?:\d+,)*(?:\d*[.])?\d+' | |
# Encode specific numeric words | |
# Of the form: 12%, 12.34% | |
# Usually included in sponsorships | |
text = re.sub(f'{NUM_REGEX}%', | |
CustomTokens.NUMBER_PERCENTAGE.value, text) | |
# Normal numbers, should not have an effect on sponsorship | |
text = re.sub(NUM_REGEX, CustomTokens.NUMBER.value, text) | |
# Replace profanity with special token | |
text = text.replace(PROFANITY_RAW, CustomTokens.PROFANITY.value) | |
text = text.replace(PROFANITY_CONVERTED, CustomTokens.PROFANITY.value) | |
return text.strip() | |
def remove_duplicate_segments(segments): | |
# Algorithm based on SponsorBlock algorithm | |
# https://blog.ajay.app/voting-and-pseudo-randomness-or-sponsorblock-or-youtube-sponsorship-segment-blocker | |
# Find sponsors that are overlapping | |
best = [] | |
for i in segments: | |
similar_segments = [] | |
for j in segments: | |
if jaccard(i['start'], i['end'], j['start'], j['end']) > 0.1: # Some overlap | |
similar_segments.append(j) | |
if similar_segments: | |
best_similar_seg = max(similar_segments, key=lambda item: ( | |
item['locked'], | |
item['votes'], | |
item['views'], | |
item['reputation'] | |
)) | |
if best_similar_seg not in best: | |
best.append(best_similar_seg) | |
if len(segments) != len(best): # Saw some reduction... try again | |
return remove_duplicate_segments(best) | |
return best | |
class PreprocessArguments: | |
""" | |
Arguments pertaining to what data we are going to preprocess. | |
""" | |
update_database: bool = field( | |
default=False, metadata={'help': 'Download the raw database.'} | |
) | |
do_create: bool = field( | |
default=False, metadata={'help': 'Merge sponsor segments into single file'} | |
) | |
min_votes: int = field( | |
default=0, metadata={'help': 'Minimum number of votes'}) | |
# Downvotes will make this negative. | |
# 1 = At least one positive vote | |
max_segment_duration: float = field( | |
default=180, # 3 minutes | |
# >180 => 2.8% | |
# >200 => 2.1% | |
# >250 => 1.1% | |
# >300 => 0.06% | |
metadata={'help': 'Ignore all segments whose duration in seconds is longer than this value (negative means no limit)'}) | |
min_views: int = field( | |
default=5, metadata={'help': 'Minimum number of views a segment must have to be considered. 0 = show all'}) | |
# min_reputation: int = field( | |
# default=0, metadata={'help': 'Minimum reputation a user must have for the segment to be included'}) | |
min_date: str = field( | |
# default='08/06/2020', # release of v2.0 (https://github.com/ajayyy/SponsorBlock/releases/tag/2.0) | |
# release of v3.0 (https://github.com/ajayyy/SponsorBlock/releases/tag/3.0) | |
default='20/08/2021', | |
# default='01/10/2020', # No more autovote | |
metadata={'help': 'Only use submissions from after this date (inclusive)'}) | |
max_date: str = field( | |
# default='01/01/9999', # Include all | |
default='15/04/2022', | |
metadata={'help': 'Only use videos that have some segment from before this date (exclusive). This allows for videos to have segments be corrected, but ignores new videos (posted after this date) to enter the pool.'}) | |
# max_unseen_date: str = field( # TODO | |
# default='02/03/2022', | |
# metadata={'help': 'Generate test and validation data from `max_date` to `max_unseen_date`'}) | |
# Specify min/max video id for splitting (seen vs. unseen) | |
keep_duplicate_segments: bool = field( | |
default=False, metadata={'help': 'Keep duplicate segments'} | |
) | |
do_process_database: bool = field( | |
default=False, metadata={'help': 'Process the raw database'} | |
) | |
do_transcribe: bool = field( | |
default=False, metadata={'help': 'Get transcripts for videos'} | |
) | |
num_jobs: int = field( | |
default=4, metadata={'help': 'Number of transcripts to download in parallel'}) | |
# overwrite: bool = field( | |
# default=False, metadata={'help': 'Overwrite training, testing and validation data, if present.'} | |
# ) | |
do_generate: bool = field( | |
default=False, metadata={'help': 'Generate labelled data.'} | |
) | |
do_split: bool = field( | |
default=False, metadata={'help': 'Generate training, testing and validation data.'} | |
) | |
positive_file: Optional[str] = field( | |
default='sponsor_segments.json', metadata={'help': 'File to output sponsored segments to (a jsonlines file).'} | |
) | |
negative_file: Optional[str] = field( | |
default='normal_segments.json', metadata={'help': 'File to output normal segments to (a jsonlines file).'} | |
) | |
percentage_positive: float = field( | |
default=0.5, metadata={'help': 'Ratio of positive (sponsor) segments to include in final output'}) | |
train_split: float = field( | |
default=0.9, metadata={'help': 'Ratio of training data. Value between 0 and 1.'}) | |
# TODO play around with ratios? lower test/validation split? | |
test_split: float = field( | |
default=0.05, metadata={'help': 'Ratio of testing data. Value between 0 and 1.'}) | |
valid_split: float = field( | |
default=0.05, metadata={'help': 'Ratio of validation data. Value between 0 and 1.'}) | |
start_index: int = field(default=None, metadata={ | |
'help': 'Video to start at.'}) | |
max_videos: int = field(default=None, metadata={ | |
'help': 'Maximum number of videos to preprocess.'}) | |
max_segments: int = field(default=None, metadata={ | |
'help': 'Maximum number of segments to produce to preprocess.'}) | |
raw_data_dir: Optional[str] = field( | |
default='raw', | |
metadata={ | |
'help': 'Raw data directory' | |
}, | |
) | |
raw_data_file: Optional[str] = field( | |
default='sponsorTimes.csv', | |
metadata={ | |
'help': 'Raw data file' | |
}, | |
) | |
min_wps: float = field( | |
default=1.5, metadata={'help': 'Ignore videos with not enough words spoken per second. This is usually indicitive of video whose captions aren\'t English.'}) | |
# 0.1 ~ 1% | |
# 0.4 ~ 2.5% | |
# 0.9 ~ 5% | |
# Mirrors for database | |
MIRRORS = [ | |
'https://sponsor.ajay.app/database/sponsorTimes.csv', # Latest | |
'https://sb-mirror.mchang.xyz/sponsorTimes.csv', # 5 minute delay | |
'https://sb.ltn.fi/database/sponsorTimes.csv', # 5 minute delay | |
] | |
# TODO only download latest updates/changes | |
def download_file(url, filename): | |
""" | |
Helper method handling downloading large files from `url` to `filename`. | |
Adapted from https://stackoverflow.com/a/42071418 | |
""" | |
chunk_size = 1024 | |
r = requests.get(url, stream=True) | |
total_bytes = int(r.headers['Content-Length']) | |
with open(filename, 'wb') as f, tqdm(unit='B', total=total_bytes) as progress: | |
for chunk in r.iter_content(chunk_size=chunk_size): | |
if chunk: # filter out keep-alive new chunks | |
progress.update(len(chunk)) | |
f.write(chunk) | |
return total_bytes == os.path.getsize(filename) | |
def main(): | |
# Responsible for getting transcrips using youtube_transcript_api, | |
# then labelling it according to SponsorBlock's API | |
logger.setLevel(logging.DEBUG) | |
# Generate final.json from sponsorTimes.csv | |
hf_parser = HfArgumentParser(( | |
PreprocessArguments, | |
DatasetArguments, | |
segment.SegmentationArguments, | |
model_module.ModelArguments, | |
GeneralArguments | |
)) | |
preprocess_args, dataset_args, segmentation_args, model_args, general_args = hf_parser.parse_args_into_dataclasses() | |
raw_dataset_path = os.path.join( | |
preprocess_args.raw_data_dir, preprocess_args.raw_data_file) | |
if preprocess_args.update_database: | |
logger.info('Updating database') | |
for mirror in MIRRORS: | |
logger.info(f'Downloading from {mirror}') | |
if download_file(mirror, raw_dataset_path): | |
break | |
logger.warning('Failed, trying next') | |
os.makedirs(dataset_args.data_dir, exist_ok=True) | |
processed_db_path = os.path.join( | |
dataset_args.data_dir, dataset_args.processed_database) | |
# TODO process all valid possible items and then do filtering only later | |
def read_db(): | |
# if not preprocess_args.overwrite and os.path.exists(processed_db_path): | |
# logger.info( | |
# 'Using cached processed database (use `--overwrite` to avoid this behaviour).') | |
# with open(processed_db_path) as fp: | |
# return json.load(fp) | |
logger.info('Processing raw database') | |
db = {} | |
allowed_categories = list(map(str.lower, CATGEGORY_OPTIONS)) | |
with open(raw_dataset_path, newline='') as csvfile: | |
reader = csv.DictReader(csvfile) | |
for line in reader: | |
# Never show: | |
if line['service'] != 'YouTube': | |
continue | |
if len(line['videoID']) != 11: | |
continue # Invalid youtube video ID | |
if line['category'] not in allowed_categories: | |
continue | |
if line['actionType'] not in ACTION_OPTIONS: | |
continue | |
# Ignore hidden items | |
if line['hidden'] == '1' or line['shadowHidden'] == '1': | |
continue | |
# Skip those that aren't highly voted | |
votes = int(line['votes']) | |
if votes < preprocess_args.min_votes: | |
continue | |
locked = line['locked'] == '1' | |
reputation = float(line['reputation']) | |
# if reputation < preprocess_args.min_reputation: | |
# continue # TODO add back? | |
# Problems like mGVn1wCkBrE | |
# TODO ignore if over max_duration | |
if line['videoID'] not in db: | |
db[line['videoID']] = [] | |
db[line['videoID']].append({ | |
'uuid': line['UUID'], | |
'start': float(line['startTime']), | |
'end': float(line['endTime']), | |
'votes': votes, | |
'locked': locked, | |
'views': int(line['views']), | |
'submission_time': float(line['timeSubmitted'])/1e3, | |
'reputation': reputation, | |
'category': line['category'], | |
'action': line['actionType'], | |
}) | |
# First, remove videos that contain a full-video label | |
# (may confuse model since disclaimers and such aren't labelled) | |
# Must do it here before removing duplicate segments | |
for key in list(db): | |
if any(x['action'] == 'full' for x in db[key]): | |
del db[key] | |
# Remove duplicate sponsor segments by choosing best (most votes) | |
if not preprocess_args.keep_duplicate_segments: | |
logger.info('Remove duplicate segments') | |
for key in db: | |
db[key] = remove_duplicate_segments(db[key]) | |
# We now remove whole videos from the list | |
# Helps with obtaining "fully-labelled" videos | |
min_date = datetime.strptime(preprocess_args.min_date, '%d/%m/%Y') | |
max_date = datetime.strptime(preprocess_args.max_date, '%d/%m/%Y') | |
for key in list(db): | |
if preprocess_args.max_segment_duration >= 0 and any(x['end'] - x['start'] > preprocess_args.max_segment_duration for x in db[key]): | |
# Remove videos that have at least one segment that is longer than | |
# the maximum allowed segment duration. This avoids introducing | |
# segments into training that might contain ignored context (since | |
# they are too long, so the middle might be normal content) | |
del db[key] | |
elif any(datetime.fromtimestamp(x['submission_time']) < min_date for x in db[key]): | |
# Remove videos where any of its segments were submitted before min_date | |
# (essentially removes videos uploaded before min_date) | |
# Prevents issues where some segments of a video are excluded | |
del db[key] | |
elif all(datetime.fromtimestamp(x['submission_time']) > max_date for x in db[key]): | |
# Remove videos where all of its segments were submitted after max_date | |
# (essentially removes videos uploaded after max_date) | |
# Allows for segments to be corrected for past videos | |
del db[key] | |
elif any(not x['locked'] and x['views'] < preprocess_args.min_views for x in db[key]): | |
# Remove videos where any of its non-locked segments do not have enough views | |
# (essentially skips videos that have not been fully watched/reviewed) | |
# Always include segments locked by VIPs, regardless of view count | |
del db[key] | |
logger.info(f'Saved {len(db)} videos') | |
with open(processed_db_path, 'w') as fp: | |
json.dump(db, fp) | |
return db | |
if preprocess_args.do_process_database: | |
read_db() | |
# 'videoID', 'startTime', 'endTime', 'votes', 'locked', 'incorrectVotes', 'UUID', | |
# 'userID', 'timeSubmitted', 'views', 'category', 'actionType', 'service', 'videoDuration', | |
# 'hidden', 'reputation', 'shadowHidden', 'hashedVideoID', 'userAgent', 'description' | |
if preprocess_args.do_transcribe: | |
logger.info('Collecting videos') | |
parsed_database = read_db() | |
# Remove transcripts already processed | |
finished = set(x.split('.')[0] for x in os.listdir( | |
'transcripts/auto/') + os.listdir('transcripts/manual/')) | |
video_ids = list(parsed_database.keys() - finished) | |
# https://stackoverflow.com/a/63495323 | |
import concurrent | |
POLL_INTERVAL = 0.1 | |
# Wrap get words function to return video_id after completion | |
def get_words_wrapper(video_id): | |
get_words(video_id) | |
return video_id | |
logger.info('Setting up ThreadPoolExecutor') | |
with concurrent.futures.ThreadPoolExecutor(max_workers=preprocess_args.num_jobs) as pool, \ | |
tqdm(total=len(video_ids)) as progress: | |
all_futures = (pool.submit(get_words_wrapper, video_id) | |
for video_id in video_ids) | |
to_process = set(itertools.islice( | |
all_futures, preprocess_args.num_jobs)) | |
try: | |
while to_process: | |
just_finished, to_process = concurrent.futures.wait( | |
to_process, timeout=POLL_INTERVAL) | |
to_process |= set(itertools.islice( | |
all_futures, len(just_finished))) | |
for d in just_finished: | |
progress.set_description(f'Processed {d.result()}') | |
progress.update() | |
except KeyboardInterrupt: | |
logger.info( | |
'Gracefully shutting down: Cancelling unscheduled tasks') | |
# only futures that are not done will prevent exiting | |
for future in to_process: | |
future.cancel() | |
logger.info('Waiting for in-progress tasks to complete') | |
concurrent.futures.wait(to_process, timeout=None) | |
logger.info('Cancellation successful') | |
final_path = os.path.join( | |
dataset_args.data_dir, dataset_args.processed_file) | |
if preprocess_args.do_create: | |
logger.info('Create final data') | |
final_data = {} | |
parsed_database = read_db() | |
transcribed = set(x.split('.')[0] for x in os.listdir( | |
'transcripts/auto/') + os.listdir('transcripts/manual/')) | |
# Only consider videos that have been transcribed already | |
video_ids = parsed_database.keys() & transcribed | |
with tqdm(total=len(video_ids)) as progress: | |
for index, video_id in enumerate(video_ids): | |
if preprocess_args.max_videos is not None and index >= preprocess_args.max_videos: | |
break | |
progress.set_description(f'Processing {video_id}') | |
progress.update() | |
video_words = get_words(video_id, process=False) | |
if not video_words: | |
continue | |
final_vid_segs = [] | |
# Only add segments with high enough wps | |
for seg in parsed_database[video_id]: | |
segment_words = segment.extract_segment( | |
video_words, seg['start'], seg['end']) | |
if len(segment_words) <= 1: | |
continue # Useless to add segment since no words | |
# duration = segment.word_end(segment_words[-1]) - segment.word_start(segment_words[0]) | |
duration = seg['end'] - seg['start'] | |
wps = len(segment_words)/duration if duration > 0 else 0 | |
# print(video_id, wps) | |
if wps < preprocess_args.min_wps: | |
# Skip sponsor segments without many words | |
# e.g. music ads with some words on each side | |
# progress.set_description(f'Skipping bad segment in {video_id} (wps={wps})') | |
continue | |
final_vid_segs.append(seg) | |
if final_vid_segs: | |
final_data[video_id] = final_vid_segs | |
# Save data | |
with open(final_path, 'w') as fp: | |
json.dump(final_data, fp) | |
# final_data = preprocess( | |
# raw_dataset_path, final_path, preprocess_args.min_votes) | |
# # TODO save metadata in final.json? | |
elif os.path.exists(final_path): | |
# Already exists | |
logging.info(f'{final_path} exists, opening file') | |
with open(final_path) as fp: | |
final_data = json.load(fp) | |
logging.info(f'Found {len(final_data)} videos') | |
else: | |
return # Do not continue | |
# TODO shuffle final_data | |
# if not os.path.exists(excess_path) or preprocess_args.overwrite | |
# TODO use overwrite param | |
positive_file = os.path.join( | |
dataset_args.data_dir, preprocess_args.positive_file) | |
negative_file = os.path.join( | |
dataset_args.data_dir, preprocess_args.negative_file) | |
if preprocess_args.do_generate: | |
logger.info('Generating') | |
# max_videos=preprocess_args.max_videos, | |
# max_segments=preprocess_args.max_segments, | |
# , max_videos, max_segments | |
from model import get_model_tokenizer | |
model, tokenizer = get_model_tokenizer(model_args, general_args) | |
# TODO | |
# count_videos = 0 | |
# count_segments = 0 | |
data = final_data.items() | |
start_index = preprocess_args.start_index or 0 | |
end_index = (preprocess_args.max_videos or len(data)) + start_index | |
data = list(itertools.islice(data, start_index, end_index)) | |
write_mode = 'w' # if preprocess_args.overwrite else 'a' | |
with open(positive_file, write_mode, encoding='utf-8') as positive, \ | |
open(negative_file, write_mode, encoding='utf-8') as negative, \ | |
tqdm(data) as progress: | |
for offset, (video_id, sponsor_segments) in enumerate(data): | |
progress.set_description(f'Processing {video_id}') | |
progress.update() | |
# Use chunk granularity to improve manual transcripts | |
words = get_words(video_id, process=False, granularity='chunk') | |
if not words: | |
continue | |
if len(words) <= 1: | |
continue | |
segments = segment.generate_labelled_segments( | |
words, tokenizer, segmentation_args, sponsor_segments) | |
if not segments: | |
continue | |
for seg in segments: | |
seg_start = segment.word_start(seg[0]) | |
seg_end = segment.word_end(seg[-1]) | |
duration = seg_end - seg_start | |
wps = len(seg)/duration if duration > 0 else 0 | |
# Ignore segments with "not enough words" in the transcript | |
# Must do here since this includes non-sponsor segments | |
if wps < preprocess_args.min_wps: | |
continue | |
d = { | |
# 'video_index': offset + start_index, | |
'video_id': video_id, | |
# 'uuid': video_id, # TODO add uuid | |
'text': ' '.join(x['cleaned'] for x in seg), | |
'start': seg_start, | |
'end': seg_end, | |
} | |
extracted_segments = extract_sponsors(seg) | |
if extracted_segments: | |
extracted_texts = [] | |
for s in extracted_segments: | |
w = ' '.join(q['cleaned'] for q in s['words']) | |
category = s['category'].upper() | |
extracted_texts.append( | |
f'{START_SEGMENT_TEMPLATE.format(category)} {w} {END_SEGMENT_TEMPLATE.format(category)}' | |
) | |
d['extracted'] = f' {CustomTokens.BETWEEN_SEGMENTS.value} '.join( | |
extracted_texts) | |
print(json.dumps(d), file=positive) | |
else: | |
d['extracted'] = CustomTokens.NO_SEGMENT.value | |
print(json.dumps(d), file=negative) | |
if preprocess_args.do_split: | |
logger.info('Splitting') | |
logger.info('Read files') | |
with open(positive_file, encoding='utf-8') as positive: | |
sponsors = positive.readlines() | |
with open(negative_file, encoding='utf-8') as negative: | |
non_sponsors = negative.readlines() | |
logger.info('Shuffle') | |
random.shuffle(sponsors) | |
random.shuffle(non_sponsors) | |
logger.info('Calculate ratios') | |
# Ensure correct ratio of positive to negative segments | |
percentage_negative = 1 - preprocess_args.percentage_positive | |
if preprocess_args.percentage_positive * len(sponsors) > len(non_sponsors): | |
# Negative is limiting | |
z = int(preprocess_args.percentage_positive / | |
percentage_negative * len(non_sponsors)) | |
# excess = sponsors[z:] | |
sponsors = sponsors[:z] | |
else: | |
# Positive is limiting | |
z = int(percentage_negative / | |
preprocess_args.percentage_positive * len(sponsors)) | |
# excess = non_sponsors[z:] | |
non_sponsors = non_sponsors[:z] | |
logger.info('Join') | |
all_labelled_segments = sponsors + non_sponsors | |
random.shuffle(all_labelled_segments) | |
# TODO split based on video ids | |
logger.info('Split') | |
ratios = [preprocess_args.train_split, | |
preprocess_args.test_split, | |
preprocess_args.valid_split] | |
train_data, test_data, valid_data = split( | |
all_labelled_segments, ratios) | |
splits = { | |
dataset_args.train_file: train_data, | |
dataset_args.test_file: test_data, | |
dataset_args.validation_file: valid_data | |
} | |
# Output training, testing and validation data | |
for name, items in splits.items(): | |
outfile = os.path.join(dataset_args.data_dir, name) | |
with open(outfile, 'w', encoding='utf-8') as fp: | |
fp.writelines(items) | |
classifier_splits = { | |
dataset_args.c_train_file: train_data, | |
dataset_args.c_test_file: test_data, | |
dataset_args.c_validation_file: valid_data | |
} | |
none_category = CATEGORIES.index(None) | |
# Output training, testing and validation data | |
for name, items in classifier_splits.items(): | |
outfile = os.path.join(dataset_args.data_dir, name) | |
with open(outfile, 'w', encoding='utf-8') as fp: | |
for item in items: | |
parsed_item = json.loads(item) # TODO add uuid | |
matches = extract_sponsor_matches_from_text( | |
parsed_item['extracted']) | |
if matches: | |
for match in matches: | |
print(json.dumps({ | |
'text': match['text'], | |
'label': CATEGORIES.index(match['category']) | |
}), file=fp) | |
else: | |
print(json.dumps({ | |
'text': parsed_item['text'], | |
'label': none_category | |
}), file=fp) | |
logger.info('Write') | |
# Save excess items | |
# excess_path = os.path.join( | |
# dataset_args.data_dir, dataset_args.excess_file) | |
# if not os.path.exists(excess_path) or preprocess_args.overwrite: | |
# with open(excess_path, 'w', encoding='utf-8') as fp: | |
# fp.writelines(excess) | |
# else: | |
# logger.info(f'Skipping {dataset_args.excess_file}') | |
logger.info( | |
f'Finished splitting: {len(sponsors)} sponsors, {len(non_sponsors)} non sponsors') | |
def split(arr, ratios): | |
"""Split array according to ratios. Sum of ratios should be <= 1""" | |
to_return = [] | |
cumulative_sum = 0 | |
for r in ratios: | |
current = cumulative_sum | |
cumulative_sum += r * len(arr) | |
to_return.append(arr[int(current):int(cumulative_sum)]) | |
return to_return | |
if __name__ == '__main__': | |
main() | |