Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import pandas as pd | |
from openai import OpenAI | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
from dotenv import dotenv_values | |
#This is a model for a multi-label classification task that classifies text into different emotions. It works only in English. | |
classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions") | |
# This is a model for a translation task, designed to translate text. | |
# We use it to translate any non-English text into English, so the classifier can then classify the emotions. | |
translator = pipeline(task="translation", model="facebook/nllb-200-distilled-600M") | |
languages = { | |
"English": "eng_Latn", | |
"French": "fra_Latn", | |
"Arabic": "arb_Arab", | |
"Spanish": "spa_Latn", | |
"German": "deu_Latn", | |
"Chinese (Simplified)": "zho_Hans", | |
"Hindi": "hin_Deva" | |
} | |
# prepare openAI client with our api key | |
env_values = dotenv_values("./app.env") | |
client = OpenAI( | |
api_key= env_values['OPENAI_API_KEY'],) | |
# Create a DataFrame to store user entries and perform analysis. | |
structure = { | |
'Date': [], | |
'Text': [], | |
'Mood': [] | |
} | |
df = pd.DataFrame(structure) | |
# Take the text and its source language, translate it to English, so that the classifier can perform the task. | |
def translator_text(text, src_lang): | |
translation = translator(text, src_lang=src_lang, tgt_lang="eng_Latn") | |
return translation[0]['translation_text'] | |
# Take all the inputs from the user, including the mood (result from the classifier), and append them to the DataFrame. | |
def appender(date, text, mood): | |
global df | |
new_row = pd.DataFrame({'Date': [date], 'Text': [text], 'Mood': [mood]}) | |
df = pd.concat([df, new_row], ignore_index=True) | |
def main(date, src_lang, text): | |
# First: Translate the text to English if it is not already in English. | |
if src_lang!= 'English': | |
text = translator_text(text, languages[src_lang]) | |
# Second : Classify the text | |
mood = classifier(text)[0]['label'] | |
# Third : Show a message to the user depending on how they feel. | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"I feel{mood}, can you tell me a message, without any introductory phrase, just the message itself.", | |
} | |
], | |
model="gpt-3.5-turbo", | |
) | |
# Finally : Save to DataFrame | |
appender(date, text, mood) | |
#Highlighted the output utilizing 'HighlightedText' in gradio | |
highlighted_mood = [(f"Today you're feeling", mood)] | |
return highlighted_mood, chat_completion.choices[0].message.content | |
#Interface | |
demo = gr.Interface( | |
fn=main, | |
inputs=[gr.Textbox(label="Enter Date (YYYY-MM-DD)"), gr.Dropdown(choices=list(languages.keys()),label="Select a Language",value="English"), gr.Textbox(label="What's happened today?")], | |
outputs=[gr.HighlightedText(label="Mood"), gr.Textbox(label="Message")], | |
title = "Daily Journal", | |
description=( | |
"Capture your daily experiences, reflections, and insights in a personal journal.\n" | |
"Log and monitor your mood daily to identify patterns and trends over time.\n" | |
"Get inspirational or motivational messages each day." | |
), | |
theme=gr.themes.Soft() # theme form gradio documentation | |
) | |
demo.launch(debug=True) |