Mood-Tracker / app.py
Shahadbal's picture
Create app.py
e1ad72a verified
raw
history blame
3.29 kB
from transformers import pipeline
import pandas as pd
from openai import OpenAI
import gradio as gr
import matplotlib.pyplot as plt
from dotenv import dotenv_values
#This is a model for a multi-label classification task that classifies text into different emotions. It works only in English.
classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
# This is a model for a translation task, designed to translate text.
# We use it to translate any non-English text into English, so the classifier can then classify the emotions.
translator = pipeline(task="translation", model="facebook/nllb-200-distilled-600M")
languages = {
"English": "eng_Latn",
"French": "fra_Latn",
"Arabic": "arb_Arab",
"Spanish": "spa_Latn",
"German": "deu_Latn",
"Chinese (Simplified)": "zho_Hans",
"Hindi": "hin_Deva"
}
# prepare openAI client with our api key
env_values = dotenv_values("./app.env")
client = OpenAI(
api_key= env_values['OPENAI_API_KEY'],)
# Create a DataFrame to store user entries and perform analysis.
structure = {
'Date': [],
'Text': [],
'Mood': []
}
df = pd.DataFrame(structure)
# Take the text and its source language, translate it to English, so that the classifier can perform the task.
def translator_text(text, src_lang):
translation = translator(text, src_lang=src_lang, tgt_lang="eng_Latn")
return translation[0]['translation_text']
# Take all the inputs from the user, including the mood (result from the classifier), and append them to the DataFrame.
def appender(date, text, mood):
global df
new_row = pd.DataFrame({'Date': [date], 'Text': [text], 'Mood': [mood]})
df = pd.concat([df, new_row], ignore_index=True)
def main(date, src_lang, text):
# First: Translate the text to English if it is not already in English.
if src_lang!= 'English':
text = translator_text(text, languages[src_lang])
# Second : Classify the text
mood = classifier(text)[0]['label']
# Third : Show a message to the user depending on how they feel.
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": f"I feel{mood}, can you tell me a message, without any introductory phrase, just the message itself.",
}
],
model="gpt-3.5-turbo",
)
# Finally : Save to DataFrame
appender(date, text, mood)
#Highlighted the output utilizing 'HighlightedText' in gradio
highlighted_mood = [(f"Today you're feeling", mood)]
return highlighted_mood, chat_completion.choices[0].message.content
#Interface
demo = gr.Interface(
fn=main,
inputs=[gr.Textbox(label="Enter Date (YYYY-MM-DD)"), gr.Dropdown(choices=list(languages.keys()),label="Select a Language",value="English"), gr.Textbox(label="What's happened today?")],
outputs=[gr.HighlightedText(label="Mood"), gr.Textbox(label="Message")],
title = "Daily Journal",
description=(
"Capture your daily experiences, reflections, and insights in a personal journal.\n"
"Log and monitor your mood daily to identify patterns and trends over time.\n"
"Get inspirational or motivational messages each day."
),
theme=gr.themes.Soft() # theme form gradio documentation
)
demo.launch(debug=True)