txcode_test / app.py
Shahrokhpk's picture
Update app.py
32c1ac9 verified
nl2sqlite_template_cn = """You are a SQLite expert. Now you need to read and understand the following [database schema] description,
as well as the [reference information] that may be used, and use SQLite knowledge to generate SQL statements to answer [user questions].
[User question]
{question}
[Database schema]
{db_schema}
[Reference information]
{evidence}
[User question]
{question}
```sql"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "XGenerationLab/XiYanSQL-QwenCoder-3B-2502"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
message = [{'role': 'user', 'content': prompt}]
text = tokenizer.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=1024,
temperature=0.1,
top_p=0.8,
do_sample=True,
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]