Spaces:
Sleeping
Sleeping
import os | |
import speech_recognition as sr | |
import fitz # PyMuPDF | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import faiss | |
import numpy as np | |
from gtts import gTTS | |
from pydub import AudioSegment | |
from groq import Groq | |
from dotenv import load_dotenv | |
import gradio as gr | |
# Load environment variables | |
load_dotenv() | |
# Initialize Groq API client | |
client = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
# Initialize model and tokenizer for embedding | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
model = AutoModel.from_pretrained("bert-base-uncased") | |
# Initialize vector database | |
dimension = 768 # Size of BERT embeddings | |
index = faiss.IndexFlatL2(dimension) | |
# Folder path containing PDFs | |
pdf_folder_path = "agriculture_pdfs" | |
# Function to convert audio file to text | |
def audio_to_text(audio_file_path): | |
recognizer = sr.Recognizer() | |
try: | |
with sr.AudioFile(audio_file_path) as source: | |
audio = recognizer.record(source) | |
text = recognizer.recognize_google(audio) | |
return text | |
except sr.UnknownValueError: | |
return None | |
except sr.RequestError: | |
return None | |
# Function to convert audio to WAV format | |
def convert_to_wav(audio_file_path): | |
if not audio_file_path: | |
raise ValueError("Invalid audio file path") | |
try: | |
audio = AudioSegment.from_file(audio_file_path) | |
wav_path = "temp_audio.wav" | |
audio.export(wav_path, format="wav") | |
return wav_path | |
except Exception: | |
return None | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_file): | |
text = "" | |
try: | |
pdf_document = fitz.open(pdf_file) | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
text += page.get_text() | |
except Exception: | |
pass | |
return text | |
# Function to embed text using a transformer model | |
def embed_text(texts, model, tokenizer): | |
try: | |
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy() | |
return embeddings | |
except Exception: | |
return np.array([]) # Return empty array on error | |
# Function to convert text to speech | |
def text_to_speech(text, output_file): | |
try: | |
tts = gTTS(text=text, lang='en') | |
tts.save(output_file) | |
return output_file | |
except Exception: | |
return None | |
# Read all PDF files from the specified folder | |
pdf_paths = [os.path.join(pdf_folder_path, f) for f in os.listdir(pdf_folder_path) if f.endswith('.pdf')] | |
texts = [] | |
for path in pdf_paths: | |
pdf_text = extract_text_from_pdf(path) | |
if pdf_text: | |
texts.append(pdf_text) | |
# Embed PDF texts and add to vector database | |
embeddings = embed_text(texts, model, tokenizer) | |
if embeddings.size > 0: | |
index.add(embeddings) | |
def process_audio(audio_file): | |
if audio_file is None: | |
return "No audio file provided", None | |
audio_file_path = audio_file if isinstance(audio_file, str) else audio_file.name | |
wav_path = convert_to_wav(audio_file_path) | |
if wav_path is None: | |
return "Error converting audio file to WAV format", None | |
text = audio_to_text(wav_path) | |
if not text: | |
return "No valid text extracted from audio", None | |
try: | |
audio_embedding = embed_text([text], model, tokenizer)[0] | |
if audio_embedding.size == 0: | |
return "Error generating embedding for the audio text", None | |
distances, indices = index.search(np.array([audio_embedding]), k=5) | |
relevant_texts = [texts[idx] for idx in indices[0]] | |
combined_text = " ".join(relevant_texts) | |
if len(combined_text) > 1000: | |
combined_text = combined_text[:1000] | |
if not combined_text.strip(): | |
return "No relevant information found in the PDFs", None | |
prompt = ( | |
f"The user has asked a query related to agricultural practices: {text}. " | |
f"Here are relevant excerpts from the Better Crops South Asia document: {combined_text}. " | |
"Based on this information, please provide accurate advice related to sustainable crop management, pest control, irrigation practices, and any recommendations for improving crop yield in the South Asian region." | |
) | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": prompt, | |
} | |
], | |
model="llama-3.1-70b-versatile", | |
) | |
response = chat_completion.choices[0].message.content | |
output_file = "advice.mp3" | |
output_path = text_to_speech(response, output_file) | |
if output_path is None: | |
return "Error generating speech output", None | |
return response, output_path | |
except Exception: | |
return "An error occurred while processing the audio", None | |
# Enhanced Gradio interface customization | |
iface = gr.Interface( | |
fn=process_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Textbox(label="Advice", lines=10), gr.Audio(label="Advice Audio")], | |
title="๐พ BetterCrops: Agriculture Support for Farmers", | |
description=( | |
"๐ก **BetterCrops** is designed to assist farmers with their crops by analyzing agricultural PDFs " | |
"and generating personalized audio advice based on your voice queries." | |
), | |
article=( | |
"<div style='text-align: center; color: #003f6e;'>" | |
"<h1 style='font-size: 36px; font-weight: bold;'>BetterCrops</h1>" | |
"<h3 style='font-size: 24px; font-weight: normal;'>Empowering Farmers with AI-driven Insights</h3>" | |
"</div>" | |
), | |
theme="grass", | |
css=( | |
""" | |
body { | |
background-color: #f0f5e9; | |
color: #2f4f2f; | |
font-family: 'Helvetica Neue', sans-serif; | |
} | |
h1, h3 { | |
color: #003f6e; | |
} | |
.gradio-container { | |
padding: 20px; | |
background: linear-gradient(135deg, #a3cfba 0%, #e8f5e9 100%); | |
border-radius: 15px; | |
} | |
.gradio-inputs, .gradio-outputs { | |
margin: 20px; | |
padding: 20px; | |
background-color: #ffffff; | |
border-radius: 10px; | |
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
""" | |
) | |
) | |
if __name__ == "__main__": | |
iface.launch() | |