Shakir60's picture
Update app.py
fd94e5f verified
raw
history blame
9.09 kB
import streamlit as st
import os
from groq import Groq
from transformers import ViTForImageClassification, ViTImageProcessor
from sentence_transformers import SentenceTransformer
from PIL import Image
import torch
import numpy as np
from typing import List, Dict, Tuple
import faiss
import json
import cv2
import logging
from datetime import datetime
import matplotlib.pyplot as plt
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class RAGSystem:
def __init__(self):
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.knowledge_base = self.load_knowledge_base()
self.vector_store = self.create_vector_store()
self.query_history = []
def load_knowledge_base(self) -> List[Dict]:
"""Load and preprocess knowledge base"""
# Using a simplified version of your knowledge base
kb = {
"spalling": [
{
"severity": "Critical",
"description": "Severe concrete spalling with exposed reinforcement",
"repair_method": "Remove deteriorated concrete, clean reinforcement",
"estimated_cost": "Very High ($15,000+)",
"immediate_action": "Evacuate area, install support"
}
],
"structural_cracks": [
{
"severity": "High",
"description": "Active structural cracks >5mm width",
"repair_method": "Structural analysis, epoxy injection",
"estimated_cost": "High ($10,000-$20,000)",
"immediate_action": "Install crack monitors"
}
]
}
documents = []
for category, items in kb.items():
for item in items:
doc_text = f"Category: {category}\n"
for key, value in item.items():
doc_text += f"{key}: {value}\n"
documents.append({"text": doc_text, "metadata": {"category": category}})
return documents
def create_vector_store(self):
"""Create FAISS vector store"""
texts = [doc["text"] for doc in self.knowledge_base]
embeddings = self.embedding_model.encode(texts)
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings).astype('float32'))
return index
def get_relevant_context(self, query: str, k: int = 3) -> str:
"""Retrieve relevant context based on query"""
try:
query_embedding = self.embedding_model.encode([query])
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
# Log query
self.query_history.append({
"timestamp": datetime.now().isoformat(),
"query": query
})
return context
except Exception as e:
logger.error(f"Error retrieving context: {e}")
return ""
class ImageAnalyzer:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
self.model = self._initialize_model()
self.processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
self.history = []
def _initialize_model(self):
model = ViTForImageClassification.from_pretrained(
"google/vit-base-patch16-224",
num_labels=len(self.defect_classes),
ignore_mismatched_sizes=True
)
return model.to(self.device)
def analyze_image(self, image: Image.Image) -> Dict:
"""Analyze image for defects"""
try:
# Preprocess image
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
# Get model predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Process results
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
defect_probs = {
self.defect_classes[i]: float(probabilities[0][i])
for i in range(len(self.defect_classes))
}
# Basic image statistics
img_array = np.array(image)
stats = {
"mean_brightness": float(np.mean(img_array)),
"image_size": image.size
}
result = {
"defect_probabilities": defect_probs,
"image_statistics": stats,
"timestamp": datetime.now().isoformat()
}
self.history.append(result)
return result
except Exception as e:
logger.error(f"Image analysis error: {e}")
return None
def get_groq_response(query: str, context: str) -> str:
"""Get response from Groq LLM"""
try:
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
prompt = f"""Based on the following context about construction defects, answer the question.
Context: {context}
Question: {query}
Provide a detailed answer based on the context."""
response = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a construction defect analysis expert."
},
{
"role": "user",
"content": prompt
}
],
model="llama2-70b-4096",
temperature=0.7,
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Groq API error: {e}")
return f"Error: Unable to get response from AI model. Please try again later."
def main():
st.set_page_config(
page_title="Construction Defect Analyzer",
page_icon="🏗️",
layout="wide"
)
st.title("🏗️ Construction Defect Analyzer")
# Initialize systems in session state
if 'rag_system' not in st.session_state:
st.session_state.rag_system = RAGSystem()
if 'image_analyzer' not in st.session_state:
st.session_state.image_analyzer = ImageAnalyzer()
# Create two columns
col1, col2 = st.columns([1, 1])
with col1:
uploaded_file = st.file_uploader(
"Upload a construction image",
type=['jpg', 'jpeg', 'png']
)
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
with st.spinner("Analyzing image..."):
results = st.session_state.image_analyzer.analyze_image(image)
if results:
st.subheader("Detected Defects")
# Create bar chart
defect_probs = results["defect_probabilities"]
fig, ax = plt.subplots()
defects = list(defect_probs.keys())
probs = list(defect_probs.values())
ax.barh(defects, probs)
ax.set_xlim(0, 1)
ax.set_xlabel("Probability")
st.pyplot(fig)
# Show image statistics
if st.checkbox("Show Image Details"):
st.json(results["image_statistics"])
with col2:
st.subheader("Ask About Defects")
user_query = st.text_input(
"Enter your question about construction defects:",
help="Example: What are the repair methods for severe spalling?"
)
if user_query:
with st.spinner("Processing query..."):
context = st.session_state.rag_system.get_relevant_context(user_query)
response = get_groq_response(user_query, context)
st.write("AI Response:")
st.write(response)
if st.checkbox("Show Retrieved Context"):
st.write("Context Used:")
st.text(context)
# Sidebar for history
with st.sidebar:
st.header("Analysis History")
if st.button("Show Recent Analyses"):
if st.session_state.image_analyzer.history:
for analysis in st.session_state.image_analyzer.history[-5:]:
st.write(f"Analysis from: {analysis['timestamp']}")
st.json(analysis["defect_probabilities"])
else:
st.write("No analyses yet")
if __name__ == "__main__":
main()