Update app.py
Browse files
app.py
CHANGED
@@ -3,19 +3,102 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import logging
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
class ImageAnalyzer:
|
14 |
def __init__(self):
|
15 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
17 |
|
18 |
-
# Load model and processor
|
19 |
try:
|
20 |
self.model = ViTForImageClassification.from_pretrained(
|
21 |
"google/vit-base-patch16-224",
|
@@ -49,50 +132,133 @@ class ImageAnalyzer:
|
|
49 |
logger.error(f"Analysis error: {e}")
|
50 |
return None
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def main():
|
53 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
# Initialize
|
56 |
if 'analyzer' not in st.session_state:
|
57 |
st.session_state.analyzer = ImageAnalyzer()
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
st.
|
61 |
-
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
# Read and display image
|
69 |
-
image = Image.open(uploaded_file)
|
70 |
-
st.image(image, caption='Uploaded Image', use_column_width=True)
|
71 |
-
|
72 |
-
# Analyze image
|
73 |
-
with st.spinner('Analyzing image...'):
|
74 |
-
results = st.session_state.analyzer.analyze_image(image)
|
75 |
|
76 |
-
|
77 |
-
|
|
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
st.
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
main()
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
import matplotlib.pyplot as plt
|
8 |
import logging
|
9 |
+
import faiss
|
10 |
+
from typing import List, Dict
|
11 |
+
from datetime import datetime
|
12 |
+
from groq import Groq
|
13 |
+
import os
|
14 |
|
15 |
# Setup logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
class RAGSystem:
|
20 |
+
def __init__(self):
|
21 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
22 |
+
self.knowledge_base = self.load_knowledge_base()
|
23 |
+
self.vector_store = self.create_vector_store()
|
24 |
+
self.query_history = []
|
25 |
+
|
26 |
+
def load_knowledge_base(self) -> List[Dict]:
|
27 |
+
"""Load and preprocess knowledge base"""
|
28 |
+
kb = {
|
29 |
+
"spalling": [
|
30 |
+
{
|
31 |
+
"severity": "Critical",
|
32 |
+
"description": "Severe concrete spalling with exposed reinforcement",
|
33 |
+
"repair_method": "Remove deteriorated concrete, clean reinforcement",
|
34 |
+
"estimated_cost": "Very High ($15,000+)",
|
35 |
+
"immediate_action": "Evacuate area, install support",
|
36 |
+
"prevention": "Regular inspections, waterproofing"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"structural_cracks": [
|
40 |
+
{
|
41 |
+
"severity": "High",
|
42 |
+
"description": "Active structural cracks >5mm width",
|
43 |
+
"repair_method": "Structural analysis, epoxy injection",
|
44 |
+
"estimated_cost": "High ($10,000-$20,000)",
|
45 |
+
"immediate_action": "Install crack monitors",
|
46 |
+
"prevention": "Regular monitoring, load management"
|
47 |
+
}
|
48 |
+
],
|
49 |
+
"surface_deterioration": [
|
50 |
+
{
|
51 |
+
"severity": "Medium",
|
52 |
+
"description": "Surface scaling and deterioration",
|
53 |
+
"repair_method": "Surface preparation, patch repair",
|
54 |
+
"estimated_cost": "Medium ($5,000-$10,000)",
|
55 |
+
"immediate_action": "Document extent, plan repairs",
|
56 |
+
"prevention": "Surface sealers, proper drainage"
|
57 |
+
}
|
58 |
+
]
|
59 |
+
}
|
60 |
+
|
61 |
+
documents = []
|
62 |
+
for category, items in kb.items():
|
63 |
+
for item in items:
|
64 |
+
doc_text = f"Category: {category}\n"
|
65 |
+
for key, value in item.items():
|
66 |
+
doc_text += f"{key}: {value}\n"
|
67 |
+
documents.append({"text": doc_text, "metadata": {"category": category}})
|
68 |
+
|
69 |
+
return documents
|
70 |
+
|
71 |
+
def create_vector_store(self):
|
72 |
+
"""Create FAISS vector store"""
|
73 |
+
texts = [doc["text"] for doc in self.knowledge_base]
|
74 |
+
embeddings = self.embedding_model.encode(texts)
|
75 |
+
dimension = embeddings.shape[1]
|
76 |
+
index = faiss.IndexFlatL2(dimension)
|
77 |
+
index.add(np.array(embeddings).astype('float32'))
|
78 |
+
return index
|
79 |
+
|
80 |
+
def get_relevant_context(self, query: str, k: int = 2) -> str:
|
81 |
+
"""Retrieve relevant context based on query"""
|
82 |
+
try:
|
83 |
+
query_embedding = self.embedding_model.encode([query])
|
84 |
+
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
85 |
+
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
|
86 |
+
|
87 |
+
self.query_history.append({
|
88 |
+
"timestamp": datetime.now().isoformat(),
|
89 |
+
"query": query
|
90 |
+
})
|
91 |
+
|
92 |
+
return context
|
93 |
+
except Exception as e:
|
94 |
+
logger.error(f"Error retrieving context: {e}")
|
95 |
+
return ""
|
96 |
+
|
97 |
class ImageAnalyzer:
|
98 |
def __init__(self):
|
99 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
100 |
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
101 |
|
|
|
102 |
try:
|
103 |
self.model = ViTForImageClassification.from_pretrained(
|
104 |
"google/vit-base-patch16-224",
|
|
|
132 |
logger.error(f"Analysis error: {e}")
|
133 |
return None
|
134 |
|
135 |
+
def get_groq_response(query: str, context: str) -> str:
|
136 |
+
"""Get response from Groq LLM"""
|
137 |
+
try:
|
138 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
139 |
+
|
140 |
+
prompt = f"""Based on the following context about construction defects, answer the question.
|
141 |
+
Context: {context}
|
142 |
+
Question: {query}
|
143 |
+
Provide a detailed answer based on the given context."""
|
144 |
+
|
145 |
+
response = client.chat.completions.create(
|
146 |
+
messages=[
|
147 |
+
{
|
148 |
+
"role": "system",
|
149 |
+
"content": "You are a construction defect analysis expert."
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"role": "user",
|
153 |
+
"content": prompt
|
154 |
+
}
|
155 |
+
],
|
156 |
+
model="llama2-70b-4096",
|
157 |
+
temperature=0.7,
|
158 |
+
)
|
159 |
+
return response.choices[0].message.content
|
160 |
+
except Exception as e:
|
161 |
+
logger.error(f"Groq API error: {e}")
|
162 |
+
return f"Error: Unable to get response from AI model. Please check your API key and try again."
|
163 |
+
|
164 |
def main():
|
165 |
+
st.set_page_config(
|
166 |
+
page_title="Construction Defect Analyzer",
|
167 |
+
page_icon="🏗️",
|
168 |
+
layout="wide"
|
169 |
+
)
|
170 |
+
|
171 |
+
st.title("🏗️ Construction Defect Analyzer")
|
172 |
|
173 |
+
# Initialize systems
|
174 |
if 'analyzer' not in st.session_state:
|
175 |
st.session_state.analyzer = ImageAnalyzer()
|
176 |
+
if 'rag_system' not in st.session_state:
|
177 |
+
st.session_state.rag_system = RAGSystem()
|
178 |
|
179 |
+
# Create two columns
|
180 |
+
col1, col2 = st.columns([1, 1])
|
181 |
+
|
182 |
+
with col1:
|
183 |
+
st.subheader("Image Analysis")
|
184 |
+
uploaded_file = st.file_uploader("Upload a construction image for analysis", type=["jpg", "jpeg", "png"])
|
185 |
|
186 |
+
if uploaded_file is not None:
|
187 |
+
try:
|
188 |
+
# Read and display image
|
189 |
+
image = Image.open(uploaded_file)
|
190 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
# Analyze image
|
193 |
+
with st.spinner('Analyzing image...'):
|
194 |
+
results = st.session_state.analyzer.analyze_image(image)
|
195 |
|
196 |
+
if results:
|
197 |
+
st.success('Analysis complete!')
|
198 |
+
|
199 |
+
# Display results
|
200 |
+
st.subheader("Detected Defects")
|
201 |
+
|
202 |
+
# Create bar chart
|
203 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
204 |
+
defects = list(results.keys())
|
205 |
+
probs = list(results.values())
|
206 |
+
ax.barh(defects, probs)
|
207 |
+
ax.set_xlim(0, 1)
|
208 |
+
plt.tight_layout()
|
209 |
+
st.pyplot(fig)
|
210 |
+
|
211 |
+
# Get most likely defect
|
212 |
+
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
|
213 |
+
st.info(f"Most likely defect: {most_likely_defect}")
|
214 |
+
else:
|
215 |
+
st.error("Analysis failed. Please try again.")
|
216 |
|
217 |
+
except Exception as e:
|
218 |
+
st.error(f"Error: {str(e)}")
|
219 |
+
logger.error(f"Process error: {e}")
|
220 |
+
|
221 |
+
with col2:
|
222 |
+
st.subheader("Ask About Defects")
|
223 |
+
user_query = st.text_input(
|
224 |
+
"Ask a question about the defects or repairs:",
|
225 |
+
help="Example: What are the repair methods for spalling?"
|
226 |
+
)
|
227 |
+
|
228 |
+
if user_query:
|
229 |
+
with st.spinner('Getting answer...'):
|
230 |
+
# Get context from RAG system
|
231 |
+
context = st.session_state.rag_system.get_relevant_context(user_query)
|
232 |
+
|
233 |
+
# Get response from Groq
|
234 |
+
response = get_groq_response(user_query, context)
|
235 |
+
|
236 |
+
# Display response
|
237 |
+
st.write("Answer:")
|
238 |
+
st.write(response)
|
239 |
+
|
240 |
+
# Option to view context
|
241 |
+
with st.expander("View retrieved information"):
|
242 |
+
st.text(context)
|
243 |
+
|
244 |
+
# Sidebar for information
|
245 |
+
with st.sidebar:
|
246 |
+
st.header("About")
|
247 |
+
st.write("""
|
248 |
+
This tool helps analyze construction defects in images and provides
|
249 |
+
information about repair methods and best practices.
|
250 |
+
|
251 |
+
Features:
|
252 |
+
- Image analysis for defect detection
|
253 |
+
- Information lookup for repair methods
|
254 |
+
- Expert AI responses to your questions
|
255 |
+
""")
|
256 |
+
|
257 |
+
# Display API status
|
258 |
+
if os.getenv("GROQ_API_KEY"):
|
259 |
+
st.success("Groq API: Connected")
|
260 |
+
else:
|
261 |
+
st.error("Groq API: Not configured")
|
262 |
|
263 |
if __name__ == "__main__":
|
264 |
main()
|