File size: 22,751 Bytes
c73686d
 
 
 
 
7136f34
a18da93
 
c73686d
 
 
 
 
 
 
 
a18da93
 
 
c73686d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b091b5
 
 
 
c73686d
9b091b5
 
 
a18da93
9b091b5
 
a18da93
9b091b5
c73686d
 
 
 
 
 
 
 
 
 
9b091b5
c73686d
9b091b5
 
c73686d
a18da93
c73686d
 
a18da93
 
 
 
c73686d
9b091b5
c73686d
 
 
9b091b5
 
 
c73686d
a18da93
 
 
 
c73686d
 
9b091b5
 
 
a18da93
c73686d
9b091b5
 
 
 
 
 
 
 
c73686d
 
a18da93
c73686d
 
 
 
 
 
 
9b091b5
 
 
 
a18da93
9b091b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a18da93
c73686d
 
9b091b5
c73686d
 
 
 
9b091b5
 
 
 
c73686d
 
 
 
 
 
 
9b091b5
c73686d
 
9b091b5
c73686d
a18da93
 
9b091b5
 
 
 
a18da93
 
9b091b5
 
 
 
 
 
 
c73686d
9b091b5
c73686d
9b091b5
 
c73686d
 
9b091b5
c73686d
9b091b5
 
 
 
 
c73686d
9b091b5
 
 
 
c73686d
 
 
9b091b5
c73686d
9b091b5
c73686d
9b091b5
c73686d
9b091b5
c73686d
 
 
9b091b5
c73686d
9b091b5
 
c73686d
 
9b091b5
c73686d
 
 
9b091b5
 
 
 
c73686d
 
 
 
9b091b5
c73686d
 
 
9b091b5
c73686d
9b091b5
c73686d
 
a18da93
 
c73686d
9b091b5
 
c73686d
9b091b5
c73686d
9b091b5
c73686d
9b091b5
 
 
 
c73686d
9b091b5
 
 
 
 
 
 
c73686d
9b091b5
c73686d
9b091b5
c73686d
9b091b5
c73686d
 
 
9b091b5
c73686d
 
 
9b091b5
 
c73686d
 
9b091b5
 
 
 
 
 
 
 
 
 
 
 
c73686d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from PIL import Image
import numpy as np
from transformers import ViTFeatureExtractor, ViTForImageClassification
from sentence_transformers import SentenceTransformer
import streamlit as st
import torch
import matplotlib.pyplot as plt
import logging
import faiss
from typing import List, Dict
from datetime import datetime
from groq import Groq
import os
from functools import lru_cache
import time
from streamlit_card import card
import plotly.graph_objects as go

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class RAGSystem:
    def __init__(self):
        # Load models only when needed
        self._embedding_model = None
        self._vector_store = None
        self._knowledge_base = None

    @property
    def embedding_model(self):
        if self._embedding_model is None:
            self._embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
        return self._embedding_model

    @property
    def knowledge_base(self):
        if self._knowledge_base is None:
            self._knowledge_base = self.load_knowledge_base()
        return self._knowledge_base

    @property
    def vector_store(self):
        if self._vector_store is None:
            self._vector_store = self.create_vector_store()
        return self._vector_store

    @staticmethod
    @lru_cache(maxsize=1)  # Cache the knowledge base
    def load_knowledge_base() -> List[Dict]:
        """Load and preprocess knowledge base"""
        kb = {
            "spalling": [
                {
                    "severity": "Critical",
                    "description": "Severe concrete spalling with exposed reinforcement",
                    "repair_method": "Remove deteriorated concrete, clean reinforcement",
                    "immediate_action": "Evacuate area, install support",
                    "prevention": "Regular inspections, waterproofing"
                }
            ],
            "structural_cracks": [
                {
                    "severity": "High",
                    "description": "Active structural cracks >5mm width",
                    "repair_method": "Structural analysis, epoxy injection",
                    "immediate_action": "Install crack monitors",
                    "prevention": "Regular monitoring, load management"
                }
            ],
            "surface_deterioration": [
                {
                    "severity": "Medium",
                    "description": "Surface scaling and deterioration",
                    "repair_method": "Surface preparation, patch repair",
                    "immediate_action": "Document extent, plan repairs",
                    "prevention": "Surface sealers, proper drainage"
                }
            ],
            "corrosion": [
                {
                    "severity": "High",
                    "description": "Corrosion of reinforcement leading to cracks",
                    "repair_method": "Remove rust, apply inhibitors",
                    "immediate_action": "Isolate affected area",
                    "prevention": "Anti-corrosion coatings, proper drainage"
                }
            ],
            "efflorescence": [
                {
                    "severity": "Low",
                    "description": "White powder deposits on concrete surfaces",
                    "repair_method": "Surface cleaning, sealant application",
                    "immediate_action": "Identify moisture source",
                    "prevention": "Improve waterproofing, reduce moisture ingress"
                }
            ],
            "delamination": [
                {
                    "severity": "Medium",
                    "description": "Separation of layers in concrete",
                    "repair_method": "Resurface or replace delaminated sections",
                    "immediate_action": "Inspect bonding layers",
                    "prevention": "Proper curing and bonding agents"
                }
            ],
            "honeycombing": [
                {
                    "severity": "Medium",
                    "description": "Voids in concrete caused by improper compaction",
                    "repair_method": "Grout injection, patch repair",
                    "immediate_action": "Assess structural impact",
                    "prevention": "Proper vibration during pouring"
                }
            ],
            "water_leakage": [
                {
                    "severity": "High",
                    "description": "Water ingress through cracks or joints",
                    "repair_method": "Injection grouting, waterproofing membranes",
                    "immediate_action": "Stop water flow, apply sealants",
                    "prevention": "Drainage systems, joint sealing"
                }
            ],
            "settlement_cracks": [
                {
                    "severity": "High",
                    "description": "Cracks due to uneven foundation settlement",
                    "repair_method": "Foundation underpinning, grouting",
                    "immediate_action": "Monitor movement, stabilize foundation",
                    "prevention": "Soil compaction, proper foundation design"
                }
            ],
            "shrinkage_cracks": [
                {
                    "severity": "Low",
                    "description": "Minor cracks caused by shrinkage during curing",
                    "repair_method": "Sealant application, surface repairs",
                    "immediate_action": "Monitor cracks",
                    "prevention": "Proper curing and moisture control"
                }
            ]
        }

        documents = []
        for category, items in kb.items():
            for item in items:
                doc_text = f"Category: {category}\n"
                for key, value in item.items():
                    doc_text += f"{key}: {value}\n"
                documents.append({"text": doc_text, "metadata": {"category": category}})

        return documents

    def create_vector_store(self):
        """Create FAISS vector store"""
        texts = [doc["text"] for doc in self.knowledge_base]
        embeddings = self.embedding_model.encode(texts)
        dimension = embeddings.shape[1]
        index = faiss.IndexFlatL2(dimension)
        index.add(np.array(embeddings).astype('float32'))
        return index

    @lru_cache(maxsize=32)  # Cache recent query results
    def get_relevant_context(self, query: str, k: int = 2) -> str:
        """Retrieve relevant context based on query"""
        try:
            query_embedding = self.embedding_model.encode([query])
            D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
            context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
            return context
        except Exception as e:
            logger.error(f"Error retrieving context: {e}")
            return ""

class ImageAnalyzer:
    def __init__(self, model_name="microsoft/swin-base-patch4-window7-224-in22k"):
        self.device = "cpu"
        self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
        self.model_name = model_name
        self._model = None
        self._feature_extractor = None

    @property
    def model(self):
        if self._model is None:
            self._model = self._load_model()
        return self._model

    @property
    def feature_extractor(self):
        if self._feature_extractor is None:
            self._feature_extractor = self._load_feature_extractor()
        return self._feature_extractor

    def _load_feature_extractor(self):
        """Load the appropriate feature extractor based on model type"""
        try:
            if "swin" in self.model_name:
                from transformers import AutoFeatureExtractor
                return AutoFeatureExtractor.from_pretrained(self.model_name)
            elif "convnext" in self.model_name:
                from transformers import ConvNextFeatureExtractor
                return ConvNextFeatureExtractor.from_pretrained(self.model_name)
            else:
                from transformers import ViTFeatureExtractor
                return ViTFeatureExtractor.from_pretrained(self.model_name)
        except Exception as e:
            logger.error(f"Feature extractor initialization error: {e}")
            return None

    def _load_model(self):
        try:
            if "swin" in self.model_name:
                from transformers import SwinForImageClassification
                model = SwinForImageClassification.from_pretrained(
                    self.model_name,
                    num_labels=len(self.defect_classes),
                    ignore_mismatched_sizes=True
                )
            elif "convnext" in self.model_name:
                from transformers import ConvNextForImageClassification
                model = ConvNextForImageClassification.from_pretrained(
                    self.model_name,
                    num_labels=len(self.defect_classes),
                    ignore_mismatched_sizes=True
                )
            else:
                from transformers import ViTForImageClassification
                model = ViTForImageClassification.from_pretrained(
                    self.model_name,
                    num_labels=len(self.defect_classes),
                    ignore_mismatched_sizes=True
                )

            model = model.to(self.device)
            
            # Reinitialize the classifier layer
            with torch.no_grad():
                if hasattr(model, 'classifier'):
                    in_features = model.classifier.in_features
                    model.classifier = torch.nn.Linear(in_features, len(self.defect_classes))
                elif hasattr(model, 'head'):
                    in_features = model.head.in_features
                    model.head = torch.nn.Linear(in_features, len(self.defect_classes))
                
            return model
        except Exception as e:
            logger.error(f"Model initialization error: {e}")
            return None

    def preprocess_image(self, image_bytes):
        """Preprocess image for model input"""
        return _cached_preprocess_image(image_bytes, self.model_name)

    def analyze_image(self, image):
        """Analyze image for defects"""
        try:
            if self.model is None:
                raise ValueError("Model not properly initialized")

            inputs = self.feature_extractor(
                images=image,
                return_tensors="pt"
            )
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            with torch.no_grad():
                outputs = self.model(**inputs)
            
            probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
            
            confidence_threshold = 0.3
            results = {
                self.defect_classes[i]: float(probs[i]) 
                for i in range(len(self.defect_classes))
                if float(probs[i]) > confidence_threshold
            }
            
            if not results:
                max_idx = torch.argmax(probs)
                results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])}
            
            return results
            
        except Exception as e:
            logger.error(f"Analysis error: {str(e)}")
            return None

@st.cache_data
def _cached_preprocess_image(image_bytes, model_name):
    """Cached version of image preprocessing"""
    try:
        image = Image.open(image_bytes)
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        # Adjust size based on model requirements
        if "convnext" in model_name:
            width, height = 384, 384
        else:
            width, height = 224, 224
            
        image = image.resize((width, height), Image.Resampling.LANCZOS)
        return image
    except Exception as e:
        logger.error(f"Image preprocessing error: {e}")
        return None

@st.cache_data      
def get_groq_response(query: str, context: str) -> str:
    """Get response from Groq LLM with caching"""
    try:
        if not os.getenv("GROQ_API_KEY"):
            return "Error: Groq API key not configured"

        client = Groq(api_key=os.getenv("GROQ_API_KEY"))
        
        prompt = f"""Based on the following context about construction defects, answer the question.
        Context: {context}
        Question: {query}
        Provide a detailed answer based on the given context."""

        response = client.chat.completions.create(
            messages=[
                {
                    "role": "system",
                    "content": "You are a construction defect analysis expert."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            model="llama-3.3-70b-versatile",
            temperature=0.7,
        )
        return response.choices[0].message.content
    except Exception as e:
        logger.error(f"Groq API error: {e}", exc_info=True)
        return f"Error: Unable to get response from AI model. Exception: {str(e)}"

def get_theme():
    """Get current theme from query parameters"""
    theme = st.query_params.get("theme", "light")
    return "dark" if theme == "dark" else "light"

def create_plotly_confidence_chart(results, unique_key):
    """Create an interactive confidence chart using Plotly"""
    theme = get_theme()
    colors = {
        'light': {'bg': 'white', 'text': 'black', 'grid': '#eee'},
        'dark': {'bg': '#2d2d2d', 'text': 'white', 'grid': '#444'}
    }

    fig = go.Figure(data=[
        go.Bar(
            x=list(results.values()),
            y=list(results.keys()),
            orientation='h',
            marker_color='rgb(26, 118, 255)',
            text=[f'{v:.1%}' for v in results.values()],
            textposition='auto',
        )
    ])

    fig.update_layout(
        title='Defect Detection Confidence',
        xaxis_title='Confidence Level',
        yaxis_title='Defect Type',
        template='plotly_dark' if theme == 'dark' else 'plotly_white',
        height=400,
        margin=dict(l=20, r=20, t=40, b=20),
        xaxis=dict(range=[0, 1]),
        plot_bgcolor=colors[theme]['bg'],
        paper_bgcolor=colors[theme]['bg'],
        font=dict(color=colors[theme]['text'])
    )

    return fig

def create_defect_card(title, description, severity, repair_method):
    """Create a styled card for defect information"""
    theme = get_theme()
    
    severity_colors = {
        "Critical": "#ff4444",
        "High": "#ffa000",
        "Medium": "#ffeb3b",
        "Low": "#4caf50"
    }
    
    bg_color = '#1e1e1e' if theme == 'dark' else '#ffffff'
    text_color = '#ffffff' if theme == 'dark' else '#000000'
    border_color = '#333333' if theme == 'dark' else '#dddddd'
    
    return f"""
    <div style="border: 1px solid {border_color}; 
                border-radius: 10px; 
                padding: 15px; 
                margin: 10px 0; 
                background-color: {bg_color}; 
                color: {text_color};">
        <h3 style="color: {'#00a0dc' if theme == 'dark' else '#1f77b4'}; 
                   margin: 0 0 10px 0;">{title}</h3>
        <p><strong>Description:</strong> {description}</p>
        <p><strong>Severity:</strong> 
            <span style="color: {severity_colors.get(severity, '#808080')}">
                {severity}
            </span>
        </p>
        <p><strong>Repair Method:</strong> {repair_method}</p>
    </div>
    """

def apply_theme_styles():
    """Apply theme-specific CSS styles"""
    theme = get_theme()
    is_dark = theme == "dark"
    
    styles = """
    <style>
    .stApp {
        background-color: """ + ('#0e1117' if is_dark else '#f8f9fa') + """;
    }
    .upload-area {
        text-align: center;
        padding: 2rem;
        border-radius: 10px;
        border: 2px dashed """ + ('#444' if is_dark else '#ccc') + """;
        background-color: """ + ('#1e1e1e' if is_dark else '#ffffff') + """;
        margin-bottom: 1rem;
    }
    .info-box {
        padding: 1rem;
        border-radius: 10px;
        margin: 1rem 0;
        background-color: """ + ('#262730' if is_dark else '#e9ecef') + """;
        border: 1px solid """ + ('#333' if is_dark else '#dee2e6') + """;
    }
    .stButton>button {
        width: 100%;
    }
    </style>
    """
    st.markdown(styles, unsafe_allow_html=True)

def main():
    st.set_page_config(
        page_title="Construction Defect Analyzer",
        page_icon="πŸ—οΈ",
        layout="wide",
        initial_sidebar_state="expanded"
    )

    # Apply theme styles
    apply_theme_styles()

    # Initialize session state
    if 'analyzer' not in st.session_state:
        st.session_state.analyzer = ImageAnalyzer()
    if 'rag_system' not in st.session_state:
        st.session_state.rag_system = RAGSystem()
    if 'analysis_history' not in st.session_state:
        st.session_state.analysis_history = []

    # Sidebar
    with st.sidebar:
        st.title("πŸ”§ Controls")
        
        # Theme selector
        theme = st.selectbox(
            "Theme",
            options=["light", "dark"],
            index=0 if get_theme() == "light" else 1,
            key="theme_selector"
        )
        
        if theme != get_theme():
            st.query_params["theme"] = theme
            st.rerun()

        st.divider()

        # API Status
        if os.getenv("GROQ_API_KEY"):
            st.success("🟒 AI System Connected")
        else:
            st.error("πŸ”΄ AI System Not Connected")

        with st.expander("ℹ️ About", expanded=True):
            st.write("""
            ### Construction Defect Analyzer
            
            Advanced AI-powered tool for:
            - Visual defect detection
            - Repair recommendations
            - Expert consultations
            - Analysis tracking
            """)

        # Settings
        with st.expander("βš™οΈ Settings"):
            if st.button("Clear History"):
                st.session_state.analysis_history = []
                st.cache_data.clear()
                st.success("History cleared!")

    # Main content
    st.title("Construction Defect Analyzer")
    
    tabs = st.tabs(["πŸ“Έ Analysis", "❓ Expert Help", "πŸ“Š History"])
    
    with tabs[0]:  # Analysis Tab
        col1, col2 = st.columns([1, 1])
        
        with col1:
            st.markdown('<div class="upload-area">', unsafe_allow_html=True)
            uploaded_file = st.file_uploader(
                "Upload construction image",
                type=["jpg", "jpeg", "png"]
            )
            st.markdown('</div>', unsafe_allow_html=True)

            if uploaded_file:
                try:
                    with st.spinner('Processing image...'):
                        image = st.session_state.analyzer.preprocess_image(uploaded_file)
                        if image:
                            st.image(image, caption='Analyzed Image', use_column_width=True)
                            results = st.session_state.analyzer.analyze_image(image)
                            if results:
                                st.session_state.analysis_history.append({
                                    'timestamp': datetime.now(),
                                    'results': results,
                                    'image': image
                                })
                except Exception as e:
                    st.error(f"Error: {str(e)}")

        with col2:
            if uploaded_file and 'results' in locals():
                st.markdown("### Analysis Results")
                
                fig = create_plotly_confidence_chart(results, "main_analysis")
                st.plotly_chart(fig, use_container_width=True, key="main_chart")
                
                primary_defect = max(results.items(), key=lambda x: x[1])[0]
                st.info(f"πŸ” Primary Defect: {primary_defect}")
                
                context = st.session_state.rag_system.get_relevant_context(primary_defect)
                if context:
                    lines = context.split('\n')
                    st.markdown(create_defect_card(
                        primary_defect,
                        next((line.split(': ')[1] for line in lines if 'description' in line.lower()), ''),
                        next((line.split(': ')[1] for line in lines if 'severity' in line.lower()), ''),
                        next((line.split(': ')[1] for line in lines if 'repair_method' in line.lower()), '')
                    ), unsafe_allow_html=True)

    with tabs[1]:  # Expert Help Tab
        st.markdown("### Ask Our Expert")
        query = st.text_input(
            "Your Question:",
            placeholder="Example: What are the best repair methods for spalling?"
        )
        
        if query:
            with st.spinner('Consulting AI expert...'):
                context = st.session_state.rag_system.get_relevant_context(query)
                if context:
                    response = get_groq_response(query, context)
                    if not response.startswith("Error"):
                        st.markdown("### Expert Response")
                        st.markdown(response)
                        with st.expander("View Source"):
                            st.markdown(context)
                    else:
                        st.error(response)

    with tabs[2]:  # History Tab
        if st.session_state.analysis_history:
            for i, analysis in enumerate(reversed(st.session_state.analysis_history)):
                with st.expander(
                    f"Analysis {i+1} - {analysis['timestamp'].strftime('%Y-%m-%d %H:%M')}"
                ):
                    cols = st.columns([1, 1])
                    with cols[0]:
                        st.image(analysis['image'], caption='Image', use_column_width=True)
                    with cols[1]:
                        fig = create_plotly_confidence_chart(
                            analysis['results'],
                            f"history_{i}"
                        )
                        st.plotly_chart(fig, use_container_width=True, key=f"history_{i}")
        else:
            st.info("No analysis history available")

if __name__ == "__main__":
    main()