Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,39 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import time
|
6 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Constants
|
9 |
MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
|
10 |
MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def cleanup_memory():
|
13 |
"""Clean up memory and GPU cache"""
|
@@ -22,7 +48,7 @@ def init_session_state():
|
|
22 |
if 'dark_mode' not in st.session_state:
|
23 |
st.session_state.dark_mode = False
|
24 |
|
25 |
-
@st.cache_resource(show_spinner="Loading AI model...")
|
26 |
def load_model():
|
27 |
"""Load and cache the model and processor"""
|
28 |
try:
|
@@ -35,43 +61,71 @@ def load_model():
|
|
35 |
ignore_mismatched_sizes=True,
|
36 |
).to(device)
|
37 |
model.eval()
|
|
|
38 |
return model, processor
|
39 |
except Exception as e:
|
40 |
-
|
41 |
return None, None
|
42 |
|
43 |
-
def
|
44 |
-
"""Validate
|
45 |
-
if
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"""Preprocess and validate uploaded image"""
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
def analyze_damage(image, model, processor):
|
64 |
"""Analyze structural damage in the image"""
|
|
|
|
|
|
|
65 |
try:
|
66 |
device = next(model.parameters()).device
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
except RuntimeError as e:
|
76 |
if "out of memory" in str(e):
|
77 |
cleanup_memory()
|
@@ -80,78 +134,120 @@ def analyze_damage(image, model, processor):
|
|
80 |
st.error(f"Error analyzing image: {str(e)}")
|
81 |
return None
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def main():
|
|
|
84 |
st.set_page_config(
|
85 |
page_title="Structural Damage Analyzer Pro",
|
86 |
page_icon="ποΈ",
|
87 |
layout="wide",
|
88 |
initial_sidebar_state="expanded"
|
89 |
)
|
90 |
-
|
91 |
-
# Initialize session state
|
92 |
init_session_state()
|
93 |
-
|
94 |
-
|
95 |
-
st.markdown(
|
96 |
-
"""
|
97 |
<div style='text-align: center; padding: 1rem;'>
|
98 |
<h1>ποΈ Structural Damage Analyzer Pro</h1>
|
99 |
<p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
|
100 |
</div>
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
st.
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# File upload
|
112 |
uploaded_file = st.file_uploader(
|
113 |
"Upload an image for analysis",
|
114 |
type=['jpg', 'jpeg', 'png'],
|
115 |
help="Supported formats: JPG, JPEG, PNG"
|
116 |
)
|
117 |
-
|
118 |
-
if uploaded_file:
|
119 |
try:
|
120 |
-
if uploaded_file.size > MAX_FILE_SIZE:
|
121 |
-
st.error("File size too large. Please upload an image smaller than 5MB.")
|
122 |
-
return
|
123 |
-
|
124 |
image = preprocess_image(uploaded_file)
|
125 |
if image is None:
|
126 |
return
|
127 |
-
|
128 |
-
validate_image(image)
|
129 |
|
130 |
-
|
131 |
-
|
|
|
|
|
132 |
|
133 |
-
with
|
134 |
-
|
|
|
|
|
135 |
if predictions is not None:
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
139 |
except Exception as e:
|
|
|
140 |
cleanup_memory()
|
141 |
-
st.error(
|
142 |
-
|
143 |
-
|
144 |
# Footer
|
145 |
st.markdown("---")
|
146 |
-
st.markdown(
|
147 |
-
"""
|
148 |
<div style='text-align: center'>
|
149 |
<p>ποΈ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
|
150 |
<p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
|
151 |
</div>
|
152 |
-
|
153 |
-
unsafe_allow_html=True
|
154 |
-
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
main()
|
|
|
1 |
+
# app.py
|
2 |
import streamlit as st
|
3 |
from transformers import ViTForImageClassification, ViTImageProcessor
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import time
|
7 |
import gc
|
8 |
+
import logging
|
9 |
+
from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES
|
10 |
+
from rag_utils import RAGSystem
|
11 |
+
import structlog
|
12 |
+
from typing import Optional, Dict, Any
|
13 |
+
from functools import lru_cache
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
logger = structlog.get_logger()
|
18 |
|
19 |
# Constants
|
20 |
MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
|
21 |
MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
|
22 |
+
MODEL = None
|
23 |
+
PROCESSOR = None
|
24 |
+
RAG_SYSTEM = None
|
25 |
+
|
26 |
+
def handle_exceptions(func):
|
27 |
+
"""Decorator for exception handling"""
|
28 |
+
def wrapper(*args, **kwargs):
|
29 |
+
try:
|
30 |
+
return func(*args, **kwargs)
|
31 |
+
except Exception as e:
|
32 |
+
cleanup_memory()
|
33 |
+
st.error(f"Error in {func.__name__}: {str(e)}")
|
34 |
+
logger.error(f"Error in {func.__name__}: {str(e)}", exc_info=True)
|
35 |
+
return None
|
36 |
+
return wrapper
|
37 |
|
38 |
def cleanup_memory():
|
39 |
"""Clean up memory and GPU cache"""
|
|
|
48 |
if 'dark_mode' not in st.session_state:
|
49 |
st.session_state.dark_mode = False
|
50 |
|
51 |
+
@st.cache_resource(show_spinner="Loading AI model...", ttl=3600*24)
|
52 |
def load_model():
|
53 |
"""Load and cache the model and processor"""
|
54 |
try:
|
|
|
61 |
ignore_mismatched_sizes=True,
|
62 |
).to(device)
|
63 |
model.eval()
|
64 |
+
logger.info("Model loaded successfully", device=device)
|
65 |
return model, processor
|
66 |
except Exception as e:
|
67 |
+
logger.error("Error loading model", error=str(e))
|
68 |
return None, None
|
69 |
|
70 |
+
def validate_upload(file) -> bool:
|
71 |
+
"""Validate uploaded file for security"""
|
72 |
+
if not file:
|
73 |
+
return False
|
74 |
+
|
75 |
+
allowed_extensions = {'jpg', 'jpeg', 'png'}
|
76 |
+
if not file.name.lower().endswith(tuple(allowed_extensions)):
|
77 |
+
st.error("Invalid file type. Please upload a JPG or PNG image.")
|
78 |
+
return False
|
79 |
+
|
80 |
+
if file.size > MAX_FILE_SIZE:
|
81 |
+
st.error("File too large. Maximum size is 5MB.")
|
82 |
+
return False
|
83 |
+
|
84 |
+
if file.type not in ['image/jpeg', 'image/png']:
|
85 |
+
st.error("Invalid file content type.")
|
86 |
+
return False
|
87 |
+
|
88 |
+
return True
|
89 |
+
|
90 |
+
@handle_exceptions
|
91 |
+
def preprocess_image(uploaded_file) -> Optional[Image.Image]:
|
92 |
"""Preprocess and validate uploaded image"""
|
93 |
+
image = Image.open(uploaded_file)
|
94 |
+
if max(image.size) > MAX_IMAGE_SIZE:
|
95 |
+
ratio = MAX_IMAGE_SIZE / max(image.size)
|
96 |
+
new_size = tuple([int(dim * ratio) for dim in image.size])
|
97 |
+
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
98 |
+
return image
|
99 |
+
|
100 |
+
@handle_exceptions
|
101 |
+
def analyze_damage(image: Image.Image, model: ViTForImageClassification,
|
102 |
+
processor: ViTImageProcessor) -> Optional[torch.Tensor]:
|
|
|
|
|
103 |
"""Analyze structural damage in the image"""
|
104 |
+
progress_bar = st.progress(0)
|
105 |
+
stages = ['Preprocessing', 'Analysis', 'Results Generation']
|
106 |
+
|
107 |
try:
|
108 |
device = next(model.parameters()).device
|
109 |
+
|
110 |
+
for i, stage in enumerate(stages):
|
111 |
+
progress_bar.progress((i + 1) / len(stages))
|
112 |
+
st.write(f"Stage {i+1}/{len(stages)}: {stage}")
|
113 |
+
|
114 |
+
if i == 0: # Preprocessing
|
115 |
+
image = image.convert('RGB')
|
116 |
+
inputs = processor(images=image, return_tensors="pt")
|
117 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
118 |
+
|
119 |
+
elif i == 1: # Analysis
|
120 |
+
with torch.no_grad():
|
121 |
+
outputs = model(**inputs)
|
122 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
123 |
+
|
124 |
+
elif i == 2: # Results Generation
|
125 |
+
result = probs.cpu()
|
126 |
+
|
127 |
+
return result
|
128 |
+
|
129 |
except RuntimeError as e:
|
130 |
if "out of memory" in str(e):
|
131 |
cleanup_memory()
|
|
|
134 |
st.error(f"Error analyzing image: {str(e)}")
|
135 |
return None
|
136 |
|
137 |
+
def display_analysis_results(predictions: torch.Tensor, analysis_time: float):
|
138 |
+
"""Display analysis results with damage details"""
|
139 |
+
st.markdown("### π Analysis Results")
|
140 |
+
st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
|
141 |
+
|
142 |
+
detected = False
|
143 |
+
for idx, prob in enumerate(predictions):
|
144 |
+
confidence = float(prob) * 100
|
145 |
+
if confidence > 15:
|
146 |
+
detected = True
|
147 |
+
damage_type = DAMAGE_TYPES[idx]['name']
|
148 |
+
|
149 |
+
with st.expander(f"{damage_type.replace('_', ' ').title()} - {confidence:.1f}%", expanded=True):
|
150 |
+
st.progress(confidence / 100)
|
151 |
+
|
152 |
+
# Get enhanced analysis from RAG system
|
153 |
+
analysis = RAG_SYSTEM.get_enhanced_analysis(damage_type, confidence)
|
154 |
+
|
155 |
+
tabs = st.tabs(["π Details", "π§ Repairs", "β οΈ Safety"])
|
156 |
+
|
157 |
+
with tabs[0]:
|
158 |
+
for detail in analysis['technical_details']:
|
159 |
+
st.markdown(detail)
|
160 |
+
|
161 |
+
with tabs[1]:
|
162 |
+
for rec in analysis['expert_recommendations']:
|
163 |
+
st.markdown(rec)
|
164 |
+
|
165 |
+
with tabs[2]:
|
166 |
+
for safety in analysis['safety_considerations']:
|
167 |
+
st.warning(safety)
|
168 |
+
|
169 |
+
if not detected:
|
170 |
+
st.info("No significant structural damage detected. Regular maintenance recommended.")
|
171 |
+
|
172 |
def main():
|
173 |
+
"""Main application function"""
|
174 |
st.set_page_config(
|
175 |
page_title="Structural Damage Analyzer Pro",
|
176 |
page_icon="ποΈ",
|
177 |
layout="wide",
|
178 |
initial_sidebar_state="expanded"
|
179 |
)
|
180 |
+
|
|
|
181 |
init_session_state()
|
182 |
+
|
183 |
+
st.markdown("""
|
|
|
|
|
184 |
<div style='text-align: center; padding: 1rem;'>
|
185 |
<h1>ποΈ Structural Damage Analyzer Pro</h1>
|
186 |
<p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
|
187 |
</div>
|
188 |
+
""", unsafe_allow_html=True)
|
189 |
+
|
190 |
+
# Sidebar
|
191 |
+
with st.sidebar:
|
192 |
+
st.markdown("### βοΈ Settings")
|
193 |
+
st.session_state.dark_mode = st.toggle("Dark Mode", st.session_state.dark_mode)
|
194 |
+
st.markdown("### π Analysis History")
|
195 |
+
if st.session_state.history:
|
196 |
+
for item in st.session_state.history[-5:]:
|
197 |
+
st.markdown(f"- {item}")
|
198 |
+
|
199 |
+
# Load model and initialize RAG system
|
200 |
+
global MODEL, PROCESSOR, RAG_SYSTEM
|
201 |
+
if MODEL is None or PROCESSOR is None:
|
202 |
+
MODEL, PROCESSOR = load_model()
|
203 |
+
if MODEL is None:
|
204 |
+
st.error("Failed to load model. Please refresh the page.")
|
205 |
+
return
|
206 |
+
|
207 |
+
if RAG_SYSTEM is None:
|
208 |
+
RAG_SYSTEM = RAGSystem()
|
209 |
+
RAG_SYSTEM.initialize_knowledge_base(KNOWLEDGE_BASE)
|
210 |
+
|
211 |
# File upload
|
212 |
uploaded_file = st.file_uploader(
|
213 |
"Upload an image for analysis",
|
214 |
type=['jpg', 'jpeg', 'png'],
|
215 |
help="Supported formats: JPG, JPEG, PNG"
|
216 |
)
|
217 |
+
|
218 |
+
if uploaded_file and validate_upload(uploaded_file):
|
219 |
try:
|
|
|
|
|
|
|
|
|
220 |
image = preprocess_image(uploaded_file)
|
221 |
if image is None:
|
222 |
return
|
|
|
|
|
223 |
|
224 |
+
col1, col2 = st.columns([1, 1])
|
225 |
+
|
226 |
+
with col1:
|
227 |
+
st.image(image, caption="Uploaded Structure", use_column_width=True)
|
228 |
|
229 |
+
with col2:
|
230 |
+
start_time = time.time()
|
231 |
+
predictions = analyze_damage(image, MODEL, PROCESSOR)
|
232 |
+
|
233 |
if predictions is not None:
|
234 |
+
analysis_time = time.time() - start_time
|
235 |
+
display_analysis_results(predictions, analysis_time)
|
236 |
+
st.session_state.history.append(f"Analyzed {uploaded_file.name}")
|
237 |
+
|
238 |
except Exception as e:
|
239 |
+
logger.error("Error in main processing loop", error=str(e))
|
240 |
cleanup_memory()
|
241 |
+
st.error("An error occurred during processing. Please try again.")
|
242 |
+
|
|
|
243 |
# Footer
|
244 |
st.markdown("---")
|
245 |
+
st.markdown("""
|
|
|
246 |
<div style='text-align: center'>
|
247 |
<p>ποΈ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
|
248 |
<p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
|
249 |
</div>
|
250 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
251 |
|
252 |
if __name__ == "__main__":
|
253 |
main()
|